A variational formulation for Dirac operators in bounded domains: applications to spectral geometric inequalities
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.2/10710 |
Resumo: | We investigate spectral features of the Dirac operator with infinite mass boundary conditions in a smooth bounded domain of $\mathbb{R}^2$. Motivated by spectral geometric inequalities, we prove a non-linear variational formulation to characterize its principal eigenvalue. This characterization turns out to be very robust and allows for a simple proof of a Szeg\"o type inequality as well as a new reformulation of a Faber-Krahn type inequality for this operator. The paper is complemented with strong numerical evidences supporting the existence of a Faber-Krahn type inequality. |
id |
RCAP_2d60cff1d36abe4195f8f525f914a96b |
---|---|
oai_identifier_str |
oai:repositorioaberto.uab.pt:10400.2/10710 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
A variational formulation for Dirac operators in bounded domains: applications to spectral geometric inequalitiesWe investigate spectral features of the Dirac operator with infinite mass boundary conditions in a smooth bounded domain of $\mathbb{R}^2$. Motivated by spectral geometric inequalities, we prove a non-linear variational formulation to characterize its principal eigenvalue. This characterization turns out to be very robust and allows for a simple proof of a Szeg\"o type inequality as well as a new reformulation of a Faber-Krahn type inequality for this operator. The paper is complemented with strong numerical evidences supporting the existence of a Faber-Krahn type inequality.SpringerRepositório AbertoAntunes, Pedro R. S.Benguria, RafaelLotoreichik, VladimirOurmières-Bonafos, Thomas2021-05-07T10:30:34Z20212021-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.2/10710eng0010-3616 (Print)info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-16T15:36:39Zoai:repositorioaberto.uab.pt:10400.2/10710Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:50:14.936310Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
A variational formulation for Dirac operators in bounded domains: applications to spectral geometric inequalities |
title |
A variational formulation for Dirac operators in bounded domains: applications to spectral geometric inequalities |
spellingShingle |
A variational formulation for Dirac operators in bounded domains: applications to spectral geometric inequalities Antunes, Pedro R. S. |
title_short |
A variational formulation for Dirac operators in bounded domains: applications to spectral geometric inequalities |
title_full |
A variational formulation for Dirac operators in bounded domains: applications to spectral geometric inequalities |
title_fullStr |
A variational formulation for Dirac operators in bounded domains: applications to spectral geometric inequalities |
title_full_unstemmed |
A variational formulation for Dirac operators in bounded domains: applications to spectral geometric inequalities |
title_sort |
A variational formulation for Dirac operators in bounded domains: applications to spectral geometric inequalities |
author |
Antunes, Pedro R. S. |
author_facet |
Antunes, Pedro R. S. Benguria, Rafael Lotoreichik, Vladimir Ourmières-Bonafos, Thomas |
author_role |
author |
author2 |
Benguria, Rafael Lotoreichik, Vladimir Ourmières-Bonafos, Thomas |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Repositório Aberto |
dc.contributor.author.fl_str_mv |
Antunes, Pedro R. S. Benguria, Rafael Lotoreichik, Vladimir Ourmières-Bonafos, Thomas |
description |
We investigate spectral features of the Dirac operator with infinite mass boundary conditions in a smooth bounded domain of $\mathbb{R}^2$. Motivated by spectral geometric inequalities, we prove a non-linear variational formulation to characterize its principal eigenvalue. This characterization turns out to be very robust and allows for a simple proof of a Szeg\"o type inequality as well as a new reformulation of a Faber-Krahn type inequality for this operator. The paper is complemented with strong numerical evidences supporting the existence of a Faber-Krahn type inequality. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-05-07T10:30:34Z 2021 2021-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.2/10710 |
url |
http://hdl.handle.net/10400.2/10710 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0010-3616 (Print) |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799135090394005504 |