Bounded domains of negative multipliers

Detalhes bibliográficos
Autor(a) principal: Johnson, Charles
Data de Publicação: 2019
Outros Autores: Morais, Gonçalo
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.21/10435
Resumo: A natural problem associated with coupling of non-autonomous oscillators and synchronization is described. It leads to a question about the boundedness of a domain associated with a derived quadratic form. Properties of real symmetric matrices with bounded domains are developed, and unboundedness is translated into satisfiability of a certain Lyapunov-like matrix form. Eventually the real symmetric matrices associated with unbounded domains are explicitly characterized in terms of inertia explicit matrices. A consequence of the characterization is that large, irreducible matrices are likely to have bounded domains.
id RCAP_cd4b2001db97dc552047e07f03e1bad5
oai_identifier_str oai:repositorio.ipl.pt:10400.21/10435
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Bounded domains of negative multipliersInertia explicitLyapunov equationCoupled oscillatorsSynchronizationA natural problem associated with coupling of non-autonomous oscillators and synchronization is described. It leads to a question about the boundedness of a domain associated with a derived quadratic form. Properties of real symmetric matrices with bounded domains are developed, and unboundedness is translated into satisfiability of a certain Lyapunov-like matrix form. Eventually the real symmetric matrices associated with unbounded domains are explicitly characterized in terms of inertia explicit matrices. A consequence of the characterization is that large, irreducible matrices are likely to have bounded domains.ElsevierRCIPLJohnson, CharlesMorais, Gonçalo2019-08-29T08:41:14Z2019-11-012019-11-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.21/10435engJOHNSON, Charles; MORAIS, Gonçalo – Bounded domains of negative multipliers. Journal of Mathematical Analysis and Applications. ISSN 0022-247X. Vol. 479, N.º 1 (2019), pp. 926-9400022-247X10.1016/j.jmaa.2019.06.058metadata only accessinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-08-03T10:00:26Zoai:repositorio.ipl.pt:10400.21/10435Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:18:51.735631Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Bounded domains of negative multipliers
title Bounded domains of negative multipliers
spellingShingle Bounded domains of negative multipliers
Johnson, Charles
Inertia explicit
Lyapunov equation
Coupled oscillators
Synchronization
title_short Bounded domains of negative multipliers
title_full Bounded domains of negative multipliers
title_fullStr Bounded domains of negative multipliers
title_full_unstemmed Bounded domains of negative multipliers
title_sort Bounded domains of negative multipliers
author Johnson, Charles
author_facet Johnson, Charles
Morais, Gonçalo
author_role author
author2 Morais, Gonçalo
author2_role author
dc.contributor.none.fl_str_mv RCIPL
dc.contributor.author.fl_str_mv Johnson, Charles
Morais, Gonçalo
dc.subject.por.fl_str_mv Inertia explicit
Lyapunov equation
Coupled oscillators
Synchronization
topic Inertia explicit
Lyapunov equation
Coupled oscillators
Synchronization
description A natural problem associated with coupling of non-autonomous oscillators and synchronization is described. It leads to a question about the boundedness of a domain associated with a derived quadratic form. Properties of real symmetric matrices with bounded domains are developed, and unboundedness is translated into satisfiability of a certain Lyapunov-like matrix form. Eventually the real symmetric matrices associated with unbounded domains are explicitly characterized in terms of inertia explicit matrices. A consequence of the characterization is that large, irreducible matrices are likely to have bounded domains.
publishDate 2019
dc.date.none.fl_str_mv 2019-08-29T08:41:14Z
2019-11-01
2019-11-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.21/10435
url http://hdl.handle.net/10400.21/10435
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv JOHNSON, Charles; MORAIS, Gonçalo – Bounded domains of negative multipliers. Journal of Mathematical Analysis and Applications. ISSN 0022-247X. Vol. 479, N.º 1 (2019), pp. 926-940
0022-247X
10.1016/j.jmaa.2019.06.058
dc.rights.driver.fl_str_mv metadata only access
info:eu-repo/semantics/openAccess
rights_invalid_str_mv metadata only access
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133454242152448