On the Topological Semigroup of Equational Classes of Finite Functions Under Composition
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://hdl.handle.net/10216/107417 |
Resumo: | We consider the set of equational classes of finite functions endowed with the operation of class composition. Thus defined, this set gains a semigroup structure. This paper is a contribution to the understanding of this semigroup. We present several interesting properties of this semigroup. In particular, we show that it constitutes a topological semigroup that is profinite and we provide a description of its regular elements in the Boolean case. |
id |
RCAP_2d73b2efaf4148700d123776c9302083 |
---|---|
oai_identifier_str |
oai:repositorio-aberto.up.pt:10216/107417 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
On the Topological Semigroup of Equational Classes of Finite Functions Under CompositionWe consider the set of equational classes of finite functions endowed with the operation of class composition. Thus defined, this set gains a semigroup structure. This paper is a contribution to the understanding of this semigroup. We present several interesting properties of this semigroup. In particular, we show that it constitutes a topological semigroup that is profinite and we provide a description of its regular elements in the Boolean case.20172017-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/10216/107417eng1542-3980Almeida, JCouceiro, MiguelWaldhauser, Tamasinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-29T15:14:45Zoai:repositorio-aberto.up.pt:10216/107417Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:18:53.713871Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
On the Topological Semigroup of Equational Classes of Finite Functions Under Composition |
title |
On the Topological Semigroup of Equational Classes of Finite Functions Under Composition |
spellingShingle |
On the Topological Semigroup of Equational Classes of Finite Functions Under Composition Almeida, J |
title_short |
On the Topological Semigroup of Equational Classes of Finite Functions Under Composition |
title_full |
On the Topological Semigroup of Equational Classes of Finite Functions Under Composition |
title_fullStr |
On the Topological Semigroup of Equational Classes of Finite Functions Under Composition |
title_full_unstemmed |
On the Topological Semigroup of Equational Classes of Finite Functions Under Composition |
title_sort |
On the Topological Semigroup of Equational Classes of Finite Functions Under Composition |
author |
Almeida, J |
author_facet |
Almeida, J Couceiro, Miguel Waldhauser, Tamas |
author_role |
author |
author2 |
Couceiro, Miguel Waldhauser, Tamas |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Almeida, J Couceiro, Miguel Waldhauser, Tamas |
description |
We consider the set of equational classes of finite functions endowed with the operation of class composition. Thus defined, this set gains a semigroup structure. This paper is a contribution to the understanding of this semigroup. We present several interesting properties of this semigroup. In particular, we show that it constitutes a topological semigroup that is profinite and we provide a description of its regular elements in the Boolean case. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017 2017-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/10216/107417 |
url |
https://hdl.handle.net/10216/107417 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1542-3980 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799136107580882945 |