Heuristic-based firefly algorithm for bound constrained nonlinear binary optimization

Detalhes bibliográficos
Autor(a) principal: Costa, M. Fernanda P.
Data de Publicação: 2014
Outros Autores: Rocha, Ana Maria A. C., Francisco, Rogério B., Fernandes, Edite Manuela da G. P.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/1822/30772
Resumo: Firefly algorithm (FA) is a metaheuristic for global optimization. In this paper,we address the practical testing of aheuristic-based FA (HBFA) for computing optimaof discrete nonlinear optimization problems,where the discrete variables are of binary type. An important issue in FA is the formulation of attractiveness of each firefly which in turn affects its movement in the search space. Dynamic updating schemes are proposed for two parameters, one from the attractiveness term and the other from the randomization term. Three simple heuristics capable of transforming real continuous variables into binary ones are analyzed. A new sigmoid ‘erf’ function is proposed. In the context of FA, three different implementations to incorporate the heuristics for binary variables into the algorithm are proposed. Based on a set of benchmark problems, a comparison is carried out with other binary dealing metaheuristics. The results demonstrate that the proposed HBFA is efficient and outperforms binary versions of differential evolution (DE) and particle swarm optimization (PSO). The HBFA also compares very favorably with angle modulated version of DE and PSO. It is shown that the variant of HBFA based on the sigmoid ‘erf’ function with ‘movements in continuous space’ is the best, both in terms of computational requirements and accuracy.
id RCAP_2d7b4b92e289166521b58dc6d13f8aec
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/30772
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Heuristic-based firefly algorithm for bound constrained nonlinear binary optimizationCiências Naturais::Ciências da Computação e da InformaçãoScience & TechnologyFirefly algorithm (FA) is a metaheuristic for global optimization. In this paper,we address the practical testing of aheuristic-based FA (HBFA) for computing optimaof discrete nonlinear optimization problems,where the discrete variables are of binary type. An important issue in FA is the formulation of attractiveness of each firefly which in turn affects its movement in the search space. Dynamic updating schemes are proposed for two parameters, one from the attractiveness term and the other from the randomization term. Three simple heuristics capable of transforming real continuous variables into binary ones are analyzed. A new sigmoid ‘erf’ function is proposed. In the context of FA, three different implementations to incorporate the heuristics for binary variables into the algorithm are proposed. Based on a set of benchmark problems, a comparison is carried out with other binary dealing metaheuristics. The results demonstrate that the proposed HBFA is efficient and outperforms binary versions of differential evolution (DE) and particle swarm optimization (PSO). The HBFA also compares very favorably with angle modulated version of DE and PSO. It is shown that the variant of HBFA based on the sigmoid ‘erf’ function with ‘movements in continuous space’ is the best, both in terms of computational requirements and accuracy.Fundação para a Ciência e a Tecnologia (FCT)Hindawi Publishing CorporationUniversidade do MinhoCosta, M. Fernanda P.Rocha, Ana Maria A. C.Francisco, Rogério B.Fernandes, Edite Manuela da G. P.20142014-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/30772eng1687-914710.1155/2014/215182http://www.hindawi.com/journals/aor/info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:52:58Zoai:repositorium.sdum.uminho.pt:1822/30772Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:52:12.485228Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Heuristic-based firefly algorithm for bound constrained nonlinear binary optimization
title Heuristic-based firefly algorithm for bound constrained nonlinear binary optimization
spellingShingle Heuristic-based firefly algorithm for bound constrained nonlinear binary optimization
Costa, M. Fernanda P.
Ciências Naturais::Ciências da Computação e da Informação
Science & Technology
title_short Heuristic-based firefly algorithm for bound constrained nonlinear binary optimization
title_full Heuristic-based firefly algorithm for bound constrained nonlinear binary optimization
title_fullStr Heuristic-based firefly algorithm for bound constrained nonlinear binary optimization
title_full_unstemmed Heuristic-based firefly algorithm for bound constrained nonlinear binary optimization
title_sort Heuristic-based firefly algorithm for bound constrained nonlinear binary optimization
author Costa, M. Fernanda P.
author_facet Costa, M. Fernanda P.
Rocha, Ana Maria A. C.
Francisco, Rogério B.
Fernandes, Edite Manuela da G. P.
author_role author
author2 Rocha, Ana Maria A. C.
Francisco, Rogério B.
Fernandes, Edite Manuela da G. P.
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Costa, M. Fernanda P.
Rocha, Ana Maria A. C.
Francisco, Rogério B.
Fernandes, Edite Manuela da G. P.
dc.subject.por.fl_str_mv Ciências Naturais::Ciências da Computação e da Informação
Science & Technology
topic Ciências Naturais::Ciências da Computação e da Informação
Science & Technology
description Firefly algorithm (FA) is a metaheuristic for global optimization. In this paper,we address the practical testing of aheuristic-based FA (HBFA) for computing optimaof discrete nonlinear optimization problems,where the discrete variables are of binary type. An important issue in FA is the formulation of attractiveness of each firefly which in turn affects its movement in the search space. Dynamic updating schemes are proposed for two parameters, one from the attractiveness term and the other from the randomization term. Three simple heuristics capable of transforming real continuous variables into binary ones are analyzed. A new sigmoid ‘erf’ function is proposed. In the context of FA, three different implementations to incorporate the heuristics for binary variables into the algorithm are proposed. Based on a set of benchmark problems, a comparison is carried out with other binary dealing metaheuristics. The results demonstrate that the proposed HBFA is efficient and outperforms binary versions of differential evolution (DE) and particle swarm optimization (PSO). The HBFA also compares very favorably with angle modulated version of DE and PSO. It is shown that the variant of HBFA based on the sigmoid ‘erf’ function with ‘movements in continuous space’ is the best, both in terms of computational requirements and accuracy.
publishDate 2014
dc.date.none.fl_str_mv 2014
2014-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/30772
url http://hdl.handle.net/1822/30772
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1687-9147
10.1155/2014/215182
http://www.hindawi.com/journals/aor/
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Hindawi Publishing Corporation
publisher.none.fl_str_mv Hindawi Publishing Corporation
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133113468583936