Heuristic-based firefly algorithm for bound constrained nonlinear binary optimization
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/1822/30772 |
Resumo: | Firefly algorithm (FA) is a metaheuristic for global optimization. In this paper,we address the practical testing of aheuristic-based FA (HBFA) for computing optimaof discrete nonlinear optimization problems,where the discrete variables are of binary type. An important issue in FA is the formulation of attractiveness of each firefly which in turn affects its movement in the search space. Dynamic updating schemes are proposed for two parameters, one from the attractiveness term and the other from the randomization term. Three simple heuristics capable of transforming real continuous variables into binary ones are analyzed. A new sigmoid ‘erf’ function is proposed. In the context of FA, three different implementations to incorporate the heuristics for binary variables into the algorithm are proposed. Based on a set of benchmark problems, a comparison is carried out with other binary dealing metaheuristics. The results demonstrate that the proposed HBFA is efficient and outperforms binary versions of differential evolution (DE) and particle swarm optimization (PSO). The HBFA also compares very favorably with angle modulated version of DE and PSO. It is shown that the variant of HBFA based on the sigmoid ‘erf’ function with ‘movements in continuous space’ is the best, both in terms of computational requirements and accuracy. |
id |
RCAP_2d7b4b92e289166521b58dc6d13f8aec |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/30772 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Heuristic-based firefly algorithm for bound constrained nonlinear binary optimizationCiências Naturais::Ciências da Computação e da InformaçãoScience & TechnologyFirefly algorithm (FA) is a metaheuristic for global optimization. In this paper,we address the practical testing of aheuristic-based FA (HBFA) for computing optimaof discrete nonlinear optimization problems,where the discrete variables are of binary type. An important issue in FA is the formulation of attractiveness of each firefly which in turn affects its movement in the search space. Dynamic updating schemes are proposed for two parameters, one from the attractiveness term and the other from the randomization term. Three simple heuristics capable of transforming real continuous variables into binary ones are analyzed. A new sigmoid ‘erf’ function is proposed. In the context of FA, three different implementations to incorporate the heuristics for binary variables into the algorithm are proposed. Based on a set of benchmark problems, a comparison is carried out with other binary dealing metaheuristics. The results demonstrate that the proposed HBFA is efficient and outperforms binary versions of differential evolution (DE) and particle swarm optimization (PSO). The HBFA also compares very favorably with angle modulated version of DE and PSO. It is shown that the variant of HBFA based on the sigmoid ‘erf’ function with ‘movements in continuous space’ is the best, both in terms of computational requirements and accuracy.Fundação para a Ciência e a Tecnologia (FCT)Hindawi Publishing CorporationUniversidade do MinhoCosta, M. Fernanda P.Rocha, Ana Maria A. C.Francisco, Rogério B.Fernandes, Edite Manuela da G. P.20142014-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/30772eng1687-914710.1155/2014/215182http://www.hindawi.com/journals/aor/info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:52:58Zoai:repositorium.sdum.uminho.pt:1822/30772Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:52:12.485228Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Heuristic-based firefly algorithm for bound constrained nonlinear binary optimization |
title |
Heuristic-based firefly algorithm for bound constrained nonlinear binary optimization |
spellingShingle |
Heuristic-based firefly algorithm for bound constrained nonlinear binary optimization Costa, M. Fernanda P. Ciências Naturais::Ciências da Computação e da Informação Science & Technology |
title_short |
Heuristic-based firefly algorithm for bound constrained nonlinear binary optimization |
title_full |
Heuristic-based firefly algorithm for bound constrained nonlinear binary optimization |
title_fullStr |
Heuristic-based firefly algorithm for bound constrained nonlinear binary optimization |
title_full_unstemmed |
Heuristic-based firefly algorithm for bound constrained nonlinear binary optimization |
title_sort |
Heuristic-based firefly algorithm for bound constrained nonlinear binary optimization |
author |
Costa, M. Fernanda P. |
author_facet |
Costa, M. Fernanda P. Rocha, Ana Maria A. C. Francisco, Rogério B. Fernandes, Edite Manuela da G. P. |
author_role |
author |
author2 |
Rocha, Ana Maria A. C. Francisco, Rogério B. Fernandes, Edite Manuela da G. P. |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Costa, M. Fernanda P. Rocha, Ana Maria A. C. Francisco, Rogério B. Fernandes, Edite Manuela da G. P. |
dc.subject.por.fl_str_mv |
Ciências Naturais::Ciências da Computação e da Informação Science & Technology |
topic |
Ciências Naturais::Ciências da Computação e da Informação Science & Technology |
description |
Firefly algorithm (FA) is a metaheuristic for global optimization. In this paper,we address the practical testing of aheuristic-based FA (HBFA) for computing optimaof discrete nonlinear optimization problems,where the discrete variables are of binary type. An important issue in FA is the formulation of attractiveness of each firefly which in turn affects its movement in the search space. Dynamic updating schemes are proposed for two parameters, one from the attractiveness term and the other from the randomization term. Three simple heuristics capable of transforming real continuous variables into binary ones are analyzed. A new sigmoid ‘erf’ function is proposed. In the context of FA, three different implementations to incorporate the heuristics for binary variables into the algorithm are proposed. Based on a set of benchmark problems, a comparison is carried out with other binary dealing metaheuristics. The results demonstrate that the proposed HBFA is efficient and outperforms binary versions of differential evolution (DE) and particle swarm optimization (PSO). The HBFA also compares very favorably with angle modulated version of DE and PSO. It is shown that the variant of HBFA based on the sigmoid ‘erf’ function with ‘movements in continuous space’ is the best, both in terms of computational requirements and accuracy. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014 2014-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/30772 |
url |
http://hdl.handle.net/1822/30772 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1687-9147 10.1155/2014/215182 http://www.hindawi.com/journals/aor/ |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Hindawi Publishing Corporation |
publisher.none.fl_str_mv |
Hindawi Publishing Corporation |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133113468583936 |