Theoretical and practical convergence of a self-adaptive penalty algorithm for constrained global optimization

Detalhes bibliográficos
Autor(a) principal: Costa, M. Fernanda P.
Data de Publicação: 2017
Outros Autores: Francisco, Rogério Brochado, Rocha, Ana Maria A. C., Fernandes, Edite Manuela da G. P.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/1822/49143
Resumo: This paper proposes a self-adaptive penalty function and presents a penalty-based algorithm for solving nonsmooth and nonconvex constrained optimization problems. We prove that the general constrained optimization problem is equivalent to a bound constrained problem in the sense that they have the same global solutions. The global minimizer of the penalty function subject to a set of bound constraints may be obtained by a population-based meta-heuristic. Further, a hybrid self-adaptive penalty firefly algorithm, with a local intensification search, is designed, and its convergence analysis is established. The numerical experiments and a comparison with other penalty-based approaches show the effectiveness of the new self-adaptive penalty algorithm in solving constrained global optimization problems.
id RCAP_96ca2db8b6d76c0ec7213e2964f37638
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/49143
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Theoretical and practical convergence of a self-adaptive penalty algorithm for constrained global optimizationGlobal optimizationSelf-adaptive penaltyFirefly algorithmCiências Naturais::MatemáticasScience & TechnologyThis paper proposes a self-adaptive penalty function and presents a penalty-based algorithm for solving nonsmooth and nonconvex constrained optimization problems. We prove that the general constrained optimization problem is equivalent to a bound constrained problem in the sense that they have the same global solutions. The global minimizer of the penalty function subject to a set of bound constraints may be obtained by a population-based meta-heuristic. Further, a hybrid self-adaptive penalty firefly algorithm, with a local intensification search, is designed, and its convergence analysis is established. The numerical experiments and a comparison with other penalty-based approaches show the effectiveness of the new self-adaptive penalty algorithm in solving constrained global optimization problems.The authors would like to thank the referees, the Associate Editor and the Editor-in-Chief for their valuable comments and suggestions to improve the paper. This work has been supported by COMPETE: POCI-01-0145-FEDER-007043 and FCT - Funda¸c˜ao para a Ciˆencia e Tecnologia within the projects UID/CEC/00319/2013 and UID/MAT/00013/2013.info:eu-repo/semantics/publishedVersionSpringerUniversidade do MinhoCosta, M. Fernanda P.Francisco, Rogério BrochadoRocha, Ana Maria A. C.Fernandes, Edite Manuela da G. P.2017-092017-09-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/49143eng0022-32391573-287810.1007/s10957-016-1042-7https://link.springer.com/article/10.1007/s10957-016-1042-7info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:49:08Zoai:repositorium.sdum.uminho.pt:1822/49143Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:47:33.431406Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Theoretical and practical convergence of a self-adaptive penalty algorithm for constrained global optimization
title Theoretical and practical convergence of a self-adaptive penalty algorithm for constrained global optimization
spellingShingle Theoretical and practical convergence of a self-adaptive penalty algorithm for constrained global optimization
Costa, M. Fernanda P.
Global optimization
Self-adaptive penalty
Firefly algorithm
Ciências Naturais::Matemáticas
Science & Technology
title_short Theoretical and practical convergence of a self-adaptive penalty algorithm for constrained global optimization
title_full Theoretical and practical convergence of a self-adaptive penalty algorithm for constrained global optimization
title_fullStr Theoretical and practical convergence of a self-adaptive penalty algorithm for constrained global optimization
title_full_unstemmed Theoretical and practical convergence of a self-adaptive penalty algorithm for constrained global optimization
title_sort Theoretical and practical convergence of a self-adaptive penalty algorithm for constrained global optimization
author Costa, M. Fernanda P.
author_facet Costa, M. Fernanda P.
Francisco, Rogério Brochado
Rocha, Ana Maria A. C.
Fernandes, Edite Manuela da G. P.
author_role author
author2 Francisco, Rogério Brochado
Rocha, Ana Maria A. C.
Fernandes, Edite Manuela da G. P.
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Costa, M. Fernanda P.
Francisco, Rogério Brochado
Rocha, Ana Maria A. C.
Fernandes, Edite Manuela da G. P.
dc.subject.por.fl_str_mv Global optimization
Self-adaptive penalty
Firefly algorithm
Ciências Naturais::Matemáticas
Science & Technology
topic Global optimization
Self-adaptive penalty
Firefly algorithm
Ciências Naturais::Matemáticas
Science & Technology
description This paper proposes a self-adaptive penalty function and presents a penalty-based algorithm for solving nonsmooth and nonconvex constrained optimization problems. We prove that the general constrained optimization problem is equivalent to a bound constrained problem in the sense that they have the same global solutions. The global minimizer of the penalty function subject to a set of bound constraints may be obtained by a population-based meta-heuristic. Further, a hybrid self-adaptive penalty firefly algorithm, with a local intensification search, is designed, and its convergence analysis is established. The numerical experiments and a comparison with other penalty-based approaches show the effectiveness of the new self-adaptive penalty algorithm in solving constrained global optimization problems.
publishDate 2017
dc.date.none.fl_str_mv 2017-09
2017-09-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/49143
url http://hdl.handle.net/1822/49143
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0022-3239
1573-2878
10.1007/s10957-016-1042-7
https://link.springer.com/article/10.1007/s10957-016-1042-7
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133049395347456