A predictive model for employee attrition
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/35942 |
Resumo: | Employee attrition is currently a major concern for companies as loosing highly qualified personnel has tremendous impacts in several aspects of its daily life. Being able to predict or anticipate attritors is highly valuable in the era of industry 4.0, as it can avoid needless costs. This dissertation proposes an approach to build a database and a predictive model for attrition that includes data from multiple companies from different sectors. Several standards and data definitions are proposed to ease collection and data fusion from different sources, resulting in a database on which a predictive model can be trained. This dissertation’s proposal deals with attrition by considering 3 classes (voluntary, involuntary and no attritors) and several machine learning models were tested to solve the problem. It was found that boosting models stand out as the best performing ones. A XGBoost model evaluated on a 20-run experiment achieved an overall mean accuracy of 78.5%, corresponding to 52.6% of the voluntary attritors, 78.9% of the involuntary attritors and 81.6% of the non-attritors, showing that voluntary attritors are harder to discriminate. For these results, the contract type, area of work in the company or salary rate have shown to be the most important factors contributing to attrition. |
id |
RCAP_2d7f51c106d1e7881d56f2c6fc55f885 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/35942 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
A predictive model for employee attritionEmployee attritionMachine learningReal dataHuman resources managementIndustry 4.0Employee attrition is currently a major concern for companies as loosing highly qualified personnel has tremendous impacts in several aspects of its daily life. Being able to predict or anticipate attritors is highly valuable in the era of industry 4.0, as it can avoid needless costs. This dissertation proposes an approach to build a database and a predictive model for attrition that includes data from multiple companies from different sectors. Several standards and data definitions are proposed to ease collection and data fusion from different sources, resulting in a database on which a predictive model can be trained. This dissertation’s proposal deals with attrition by considering 3 classes (voluntary, involuntary and no attritors) and several machine learning models were tested to solve the problem. It was found that boosting models stand out as the best performing ones. A XGBoost model evaluated on a 20-run experiment achieved an overall mean accuracy of 78.5%, corresponding to 52.6% of the voluntary attritors, 78.9% of the involuntary attritors and 81.6% of the non-attritors, showing that voluntary attritors are harder to discriminate. For these results, the contract type, area of work in the company or salary rate have shown to be the most important factors contributing to attrition.empresas, uma vez que a perda de pessoal altamente qualificado tem enormes impactos em vários aspetos da sua vida diária. Ser capaz de prever ou antecipar a saída de funcionários é altamente valioso na era da Indústria 4.0, visto que pode evitar custos desnecessários. Esta dissertação propõe uma abordagem para construir uma base de dados, definindo variáveis relevantes, e um modelo preditivo de attrition que inclui dados de várias empresas, de diferentes setores. Vários padrões e definições de dados são propostos para facilitar a recolha e junção de dados de diferentes fontes, resultando numa base de dados com a qual se pode treinar um modelo preditivo. A proposta desta dissertação trata do attrition considerando 3 classes (voluntário, involuntário e não-attrition) e vários modelos de aprendizagem automática foram testados para procurar uma solução para o problema. Constatou-se que os modelos de boosting se destacam por terem melhor desempenho. Um modelo XGBoost avaliado numa experiência composta por 20 execuções alcançou uma precisão (accuracy) média de 78.5%, correspondendo a 52.6% dos funcionários em attrition voluntário, 78.9% em attrition involuntário e 81.6% em não-attrition, mostrando que os funcionários em situação de attrition voluntário são mais difíceis de discriminar. Para estes resultados, o tipo de contrato, a área de atuação na empresa ou a taxa salarial mostraram-se como os fatores mais importantes que contribuem para o attrition.2024-12-20T00:00:00Z2022-12-12T00:00:00Z2022-12-12info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/35942engGomes, Adriano de Oliveirainfo:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:09:28Zoai:ria.ua.pt:10773/35942Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:06:57.306100Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
A predictive model for employee attrition |
title |
A predictive model for employee attrition |
spellingShingle |
A predictive model for employee attrition Gomes, Adriano de Oliveira Employee attrition Machine learning Real data Human resources management Industry 4.0 |
title_short |
A predictive model for employee attrition |
title_full |
A predictive model for employee attrition |
title_fullStr |
A predictive model for employee attrition |
title_full_unstemmed |
A predictive model for employee attrition |
title_sort |
A predictive model for employee attrition |
author |
Gomes, Adriano de Oliveira |
author_facet |
Gomes, Adriano de Oliveira |
author_role |
author |
dc.contributor.author.fl_str_mv |
Gomes, Adriano de Oliveira |
dc.subject.por.fl_str_mv |
Employee attrition Machine learning Real data Human resources management Industry 4.0 |
topic |
Employee attrition Machine learning Real data Human resources management Industry 4.0 |
description |
Employee attrition is currently a major concern for companies as loosing highly qualified personnel has tremendous impacts in several aspects of its daily life. Being able to predict or anticipate attritors is highly valuable in the era of industry 4.0, as it can avoid needless costs. This dissertation proposes an approach to build a database and a predictive model for attrition that includes data from multiple companies from different sectors. Several standards and data definitions are proposed to ease collection and data fusion from different sources, resulting in a database on which a predictive model can be trained. This dissertation’s proposal deals with attrition by considering 3 classes (voluntary, involuntary and no attritors) and several machine learning models were tested to solve the problem. It was found that boosting models stand out as the best performing ones. A XGBoost model evaluated on a 20-run experiment achieved an overall mean accuracy of 78.5%, corresponding to 52.6% of the voluntary attritors, 78.9% of the involuntary attritors and 81.6% of the non-attritors, showing that voluntary attritors are harder to discriminate. For these results, the contract type, area of work in the company or salary rate have shown to be the most important factors contributing to attrition. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-12-12T00:00:00Z 2022-12-12 2024-12-20T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/35942 |
url |
http://hdl.handle.net/10773/35942 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
eu_rights_str_mv |
embargoedAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137724913942528 |