Image Quality Improvement of Medical Images using Deep Learning for Computer-aided Diagnosis

Detalhes bibliográficos
Autor(a) principal: Simões, Beatriz Rodrigues Branco de Almeida
Data de Publicação: 2020
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/115387
Resumo: Retina image analysis is an important screening tool for early detection of multiple dis eases such as diabetic retinopathy which greatly impairs visual function. Image analy sis and pathology detection can be accomplished both by ophthalmologists and by the use of computer-aided diagnosis systems. Advancements in hardware technology led to more portable and less expensive imaging devices for medical image acquisition. This promotes large scale remote diagnosis by clinicians as well as the implementation of computer-aided diagnosis systems for local routine disease screening. However, lower cost equipment generally results in inferior quality images. This may jeopardize the reliability of the acquired images and thus hinder the overall performance of the diagnos tic tool. To solve this open challenge, we carried out an in-depth study on using different deep learning-based frameworks for improving retina image quality while maintaining the underlying morphological information for the diagnosis. Our results demonstrate that using a Cycle Generative Adversarial Network for unpaired image-to-image trans lation leads to successful transformations of retina images from a low- to a high-quality domain. The visual evidence of this improvement was quantitatively affirmed by the two proposed validation methods. The first used a retina image quality classifier to confirm a significant prediction label shift towards a quality enhance. On average, a 50% increase of images being classified as high-quality was verified. The second analysed the perfor mance modifications of a diabetic retinopathy detection algorithm upon being trained with the quality-improved images. The latter led to strong evidence that the proposed solution satisfies the requirement of maintaining the images’ original information for diagnosis, and that it assures a pathology-assessment more sensitive to the presence of pathological signs. These experimental results confirm the potential effectiveness of our solution in improving retina image quality for diagnosis. Along with the addressed con tributions, we analysed how the construction of the data sets representing the low-quality domain impacts the quality translation efficiency. Our findings suggest that by tackling the problem more selectively, that is, constructing data sets more homogeneous in terms of their image defects, we can obtain more accentuated quality transformations.
id RCAP_2dea21f6fabef68c6a6929bb9dde5844
oai_identifier_str oai:run.unl.pt:10362/115387
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Image Quality Improvement of Medical Images using Deep Learning for Computer-aided DiagnosisGenerative ModelsDiabetic RetinopathyRetina Image QualityDomínio/Área Científica::Engenharia e Tecnologia::Engenharia MédicaRetina image analysis is an important screening tool for early detection of multiple dis eases such as diabetic retinopathy which greatly impairs visual function. Image analy sis and pathology detection can be accomplished both by ophthalmologists and by the use of computer-aided diagnosis systems. Advancements in hardware technology led to more portable and less expensive imaging devices for medical image acquisition. This promotes large scale remote diagnosis by clinicians as well as the implementation of computer-aided diagnosis systems for local routine disease screening. However, lower cost equipment generally results in inferior quality images. This may jeopardize the reliability of the acquired images and thus hinder the overall performance of the diagnos tic tool. To solve this open challenge, we carried out an in-depth study on using different deep learning-based frameworks for improving retina image quality while maintaining the underlying morphological information for the diagnosis. Our results demonstrate that using a Cycle Generative Adversarial Network for unpaired image-to-image trans lation leads to successful transformations of retina images from a low- to a high-quality domain. The visual evidence of this improvement was quantitatively affirmed by the two proposed validation methods. The first used a retina image quality classifier to confirm a significant prediction label shift towards a quality enhance. On average, a 50% increase of images being classified as high-quality was verified. The second analysed the perfor mance modifications of a diabetic retinopathy detection algorithm upon being trained with the quality-improved images. The latter led to strong evidence that the proposed solution satisfies the requirement of maintaining the images’ original information for diagnosis, and that it assures a pathology-assessment more sensitive to the presence of pathological signs. These experimental results confirm the potential effectiveness of our solution in improving retina image quality for diagnosis. Along with the addressed con tributions, we analysed how the construction of the data sets representing the low-quality domain impacts the quality translation efficiency. Our findings suggest that by tackling the problem more selectively, that is, constructing data sets more homogeneous in terms of their image defects, we can obtain more accentuated quality transformations.Gamboa, HugoCarreiro, AndréRUNSimões, Beatriz Rodrigues Branco de Almeida2021-04-12T14:35:25Z2021-0220202021-02-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/115387enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T04:57:57Zoai:run.unl.pt:10362/115387Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:42:44.583665Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Image Quality Improvement of Medical Images using Deep Learning for Computer-aided Diagnosis
title Image Quality Improvement of Medical Images using Deep Learning for Computer-aided Diagnosis
spellingShingle Image Quality Improvement of Medical Images using Deep Learning for Computer-aided Diagnosis
Simões, Beatriz Rodrigues Branco de Almeida
Generative Models
Diabetic Retinopathy
Retina Image Quality
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Médica
title_short Image Quality Improvement of Medical Images using Deep Learning for Computer-aided Diagnosis
title_full Image Quality Improvement of Medical Images using Deep Learning for Computer-aided Diagnosis
title_fullStr Image Quality Improvement of Medical Images using Deep Learning for Computer-aided Diagnosis
title_full_unstemmed Image Quality Improvement of Medical Images using Deep Learning for Computer-aided Diagnosis
title_sort Image Quality Improvement of Medical Images using Deep Learning for Computer-aided Diagnosis
author Simões, Beatriz Rodrigues Branco de Almeida
author_facet Simões, Beatriz Rodrigues Branco de Almeida
author_role author
dc.contributor.none.fl_str_mv Gamboa, Hugo
Carreiro, André
RUN
dc.contributor.author.fl_str_mv Simões, Beatriz Rodrigues Branco de Almeida
dc.subject.por.fl_str_mv Generative Models
Diabetic Retinopathy
Retina Image Quality
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Médica
topic Generative Models
Diabetic Retinopathy
Retina Image Quality
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Médica
description Retina image analysis is an important screening tool for early detection of multiple dis eases such as diabetic retinopathy which greatly impairs visual function. Image analy sis and pathology detection can be accomplished both by ophthalmologists and by the use of computer-aided diagnosis systems. Advancements in hardware technology led to more portable and less expensive imaging devices for medical image acquisition. This promotes large scale remote diagnosis by clinicians as well as the implementation of computer-aided diagnosis systems for local routine disease screening. However, lower cost equipment generally results in inferior quality images. This may jeopardize the reliability of the acquired images and thus hinder the overall performance of the diagnos tic tool. To solve this open challenge, we carried out an in-depth study on using different deep learning-based frameworks for improving retina image quality while maintaining the underlying morphological information for the diagnosis. Our results demonstrate that using a Cycle Generative Adversarial Network for unpaired image-to-image trans lation leads to successful transformations of retina images from a low- to a high-quality domain. The visual evidence of this improvement was quantitatively affirmed by the two proposed validation methods. The first used a retina image quality classifier to confirm a significant prediction label shift towards a quality enhance. On average, a 50% increase of images being classified as high-quality was verified. The second analysed the perfor mance modifications of a diabetic retinopathy detection algorithm upon being trained with the quality-improved images. The latter led to strong evidence that the proposed solution satisfies the requirement of maintaining the images’ original information for diagnosis, and that it assures a pathology-assessment more sensitive to the presence of pathological signs. These experimental results confirm the potential effectiveness of our solution in improving retina image quality for diagnosis. Along with the addressed con tributions, we analysed how the construction of the data sets representing the low-quality domain impacts the quality translation efficiency. Our findings suggest that by tackling the problem more selectively, that is, constructing data sets more homogeneous in terms of their image defects, we can obtain more accentuated quality transformations.
publishDate 2020
dc.date.none.fl_str_mv 2020
2021-04-12T14:35:25Z
2021-02
2021-02-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/115387
url http://hdl.handle.net/10362/115387
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799138038511566848