Dynamical analysis and Big Bang bifurcations of 1D and 2D Gompertz’s growth functions

Detalhes bibliográficos
Autor(a) principal: Rocha, J. Leonel
Data de Publicação: 2016
Outros Autores: Taha, Abdel-Kaddous, Fournier-Prunaret, D.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.21/7274
Resumo: In this paper, we study the dynamics and bifurcation properties of a three-parameter family of 1D Gompertz’s growth functions, which are defined by the population size functions of the Gompertz logistic growth equation. The dynamical behavior is complex leading to a diversified bifurcation structure, leading to the big bang bifurcations of the so-called “box-within-a-box” fractal type. We provide and discuss sufficient conditions for the existence of these bifurcation cascades for 1D Gompertz’s growth functions. Moreover, this work concerns the description of some bifurcation properties of a Hénon’s map type embedding: a “continuous” embedding of 1D Gompertz’s growth functions into a 2D diffeomorphism. More particularly, properties that characterize the big bang bifurcations are considered in relation with this coupling of two population size functions, varying the embedding parameter. The existence of communication areas of crossroad area type or swallowtails are identified for this 2D diffeomorphism.
id RCAP_2f578b5e30c00a81ae665fcd4946d536
oai_identifier_str oai:repositorio.ipl.pt:10400.21/7274
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Dynamical analysis and Big Bang bifurcations of 1D and 2D Gompertz’s growth functionsGompertz’s growth functionsPopulation dynamicsBig bang bifurcationsFold and flip bifurcationsEmbeddingDifeomorfismoIn this paper, we study the dynamics and bifurcation properties of a three-parameter family of 1D Gompertz’s growth functions, which are defined by the population size functions of the Gompertz logistic growth equation. The dynamical behavior is complex leading to a diversified bifurcation structure, leading to the big bang bifurcations of the so-called “box-within-a-box” fractal type. We provide and discuss sufficient conditions for the existence of these bifurcation cascades for 1D Gompertz’s growth functions. Moreover, this work concerns the description of some bifurcation properties of a Hénon’s map type embedding: a “continuous” embedding of 1D Gompertz’s growth functions into a 2D diffeomorphism. More particularly, properties that characterize the big bang bifurcations are considered in relation with this coupling of two population size functions, varying the embedding parameter. The existence of communication areas of crossroad area type or swallowtails are identified for this 2D diffeomorphism.UID/MAT/00006/2013World Scientific PublishingRCIPLRocha, J. LeonelTaha, Abdel-KaddousFournier-Prunaret, D.2017-07-18T10:10:53Z2016-102016-10-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.21/7274engROCHA, J. Leonel; TAHA, Abdel-Kaddous; FOURNIER-PRUNARET,D. - Dynamical Analysis and Big Bang Bifurcations of 1D and 2D Gompertz’s Growth Functions. International Journal of Bifurcation and Chaos. ISSN 0218-1274. Vol. 26, N. º11, (2016), pp. 1-220218-127410.1142/S0218127416300305metadata only accessinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-08-03T09:53:07Zoai:repositorio.ipl.pt:10400.21/7274Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:16:15.374117Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Dynamical analysis and Big Bang bifurcations of 1D and 2D Gompertz’s growth functions
title Dynamical analysis and Big Bang bifurcations of 1D and 2D Gompertz’s growth functions
spellingShingle Dynamical analysis and Big Bang bifurcations of 1D and 2D Gompertz’s growth functions
Rocha, J. Leonel
Gompertz’s growth functions
Population dynamics
Big bang bifurcations
Fold and flip bifurcations
Embedding
Difeomorfismo
title_short Dynamical analysis and Big Bang bifurcations of 1D and 2D Gompertz’s growth functions
title_full Dynamical analysis and Big Bang bifurcations of 1D and 2D Gompertz’s growth functions
title_fullStr Dynamical analysis and Big Bang bifurcations of 1D and 2D Gompertz’s growth functions
title_full_unstemmed Dynamical analysis and Big Bang bifurcations of 1D and 2D Gompertz’s growth functions
title_sort Dynamical analysis and Big Bang bifurcations of 1D and 2D Gompertz’s growth functions
author Rocha, J. Leonel
author_facet Rocha, J. Leonel
Taha, Abdel-Kaddous
Fournier-Prunaret, D.
author_role author
author2 Taha, Abdel-Kaddous
Fournier-Prunaret, D.
author2_role author
author
dc.contributor.none.fl_str_mv RCIPL
dc.contributor.author.fl_str_mv Rocha, J. Leonel
Taha, Abdel-Kaddous
Fournier-Prunaret, D.
dc.subject.por.fl_str_mv Gompertz’s growth functions
Population dynamics
Big bang bifurcations
Fold and flip bifurcations
Embedding
Difeomorfismo
topic Gompertz’s growth functions
Population dynamics
Big bang bifurcations
Fold and flip bifurcations
Embedding
Difeomorfismo
description In this paper, we study the dynamics and bifurcation properties of a three-parameter family of 1D Gompertz’s growth functions, which are defined by the population size functions of the Gompertz logistic growth equation. The dynamical behavior is complex leading to a diversified bifurcation structure, leading to the big bang bifurcations of the so-called “box-within-a-box” fractal type. We provide and discuss sufficient conditions for the existence of these bifurcation cascades for 1D Gompertz’s growth functions. Moreover, this work concerns the description of some bifurcation properties of a Hénon’s map type embedding: a “continuous” embedding of 1D Gompertz’s growth functions into a 2D diffeomorphism. More particularly, properties that characterize the big bang bifurcations are considered in relation with this coupling of two population size functions, varying the embedding parameter. The existence of communication areas of crossroad area type or swallowtails are identified for this 2D diffeomorphism.
publishDate 2016
dc.date.none.fl_str_mv 2016-10
2016-10-01T00:00:00Z
2017-07-18T10:10:53Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.21/7274
url http://hdl.handle.net/10400.21/7274
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv ROCHA, J. Leonel; TAHA, Abdel-Kaddous; FOURNIER-PRUNARET,D. - Dynamical Analysis and Big Bang Bifurcations of 1D and 2D Gompertz’s Growth Functions. International Journal of Bifurcation and Chaos. ISSN 0218-1274. Vol. 26, N. º11, (2016), pp. 1-22
0218-1274
10.1142/S0218127416300305
dc.rights.driver.fl_str_mv metadata only access
info:eu-repo/semantics/openAccess
rights_invalid_str_mv metadata only access
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv World Scientific Publishing
publisher.none.fl_str_mv World Scientific Publishing
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133421999489024