Dynamical analysis and Big Bang bifurcations of 1D and 2D Gompertz’s growth functions
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.21/7274 |
Resumo: | In this paper, we study the dynamics and bifurcation properties of a three-parameter family of 1D Gompertz’s growth functions, which are defined by the population size functions of the Gompertz logistic growth equation. The dynamical behavior is complex leading to a diversified bifurcation structure, leading to the big bang bifurcations of the so-called “box-within-a-box” fractal type. We provide and discuss sufficient conditions for the existence of these bifurcation cascades for 1D Gompertz’s growth functions. Moreover, this work concerns the description of some bifurcation properties of a Hénon’s map type embedding: a “continuous” embedding of 1D Gompertz’s growth functions into a 2D diffeomorphism. More particularly, properties that characterize the big bang bifurcations are considered in relation with this coupling of two population size functions, varying the embedding parameter. The existence of communication areas of crossroad area type or swallowtails are identified for this 2D diffeomorphism. |
id |
RCAP_2f578b5e30c00a81ae665fcd4946d536 |
---|---|
oai_identifier_str |
oai:repositorio.ipl.pt:10400.21/7274 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Dynamical analysis and Big Bang bifurcations of 1D and 2D Gompertz’s growth functionsGompertz’s growth functionsPopulation dynamicsBig bang bifurcationsFold and flip bifurcationsEmbeddingDifeomorfismoIn this paper, we study the dynamics and bifurcation properties of a three-parameter family of 1D Gompertz’s growth functions, which are defined by the population size functions of the Gompertz logistic growth equation. The dynamical behavior is complex leading to a diversified bifurcation structure, leading to the big bang bifurcations of the so-called “box-within-a-box” fractal type. We provide and discuss sufficient conditions for the existence of these bifurcation cascades for 1D Gompertz’s growth functions. Moreover, this work concerns the description of some bifurcation properties of a Hénon’s map type embedding: a “continuous” embedding of 1D Gompertz’s growth functions into a 2D diffeomorphism. More particularly, properties that characterize the big bang bifurcations are considered in relation with this coupling of two population size functions, varying the embedding parameter. The existence of communication areas of crossroad area type or swallowtails are identified for this 2D diffeomorphism.UID/MAT/00006/2013World Scientific PublishingRCIPLRocha, J. LeonelTaha, Abdel-KaddousFournier-Prunaret, D.2017-07-18T10:10:53Z2016-102016-10-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.21/7274engROCHA, J. Leonel; TAHA, Abdel-Kaddous; FOURNIER-PRUNARET,D. - Dynamical Analysis and Big Bang Bifurcations of 1D and 2D Gompertz’s Growth Functions. International Journal of Bifurcation and Chaos. ISSN 0218-1274. Vol. 26, N. º11, (2016), pp. 1-220218-127410.1142/S0218127416300305metadata only accessinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-08-03T09:53:07Zoai:repositorio.ipl.pt:10400.21/7274Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:16:15.374117Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Dynamical analysis and Big Bang bifurcations of 1D and 2D Gompertz’s growth functions |
title |
Dynamical analysis and Big Bang bifurcations of 1D and 2D Gompertz’s growth functions |
spellingShingle |
Dynamical analysis and Big Bang bifurcations of 1D and 2D Gompertz’s growth functions Rocha, J. Leonel Gompertz’s growth functions Population dynamics Big bang bifurcations Fold and flip bifurcations Embedding Difeomorfismo |
title_short |
Dynamical analysis and Big Bang bifurcations of 1D and 2D Gompertz’s growth functions |
title_full |
Dynamical analysis and Big Bang bifurcations of 1D and 2D Gompertz’s growth functions |
title_fullStr |
Dynamical analysis and Big Bang bifurcations of 1D and 2D Gompertz’s growth functions |
title_full_unstemmed |
Dynamical analysis and Big Bang bifurcations of 1D and 2D Gompertz’s growth functions |
title_sort |
Dynamical analysis and Big Bang bifurcations of 1D and 2D Gompertz’s growth functions |
author |
Rocha, J. Leonel |
author_facet |
Rocha, J. Leonel Taha, Abdel-Kaddous Fournier-Prunaret, D. |
author_role |
author |
author2 |
Taha, Abdel-Kaddous Fournier-Prunaret, D. |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
RCIPL |
dc.contributor.author.fl_str_mv |
Rocha, J. Leonel Taha, Abdel-Kaddous Fournier-Prunaret, D. |
dc.subject.por.fl_str_mv |
Gompertz’s growth functions Population dynamics Big bang bifurcations Fold and flip bifurcations Embedding Difeomorfismo |
topic |
Gompertz’s growth functions Population dynamics Big bang bifurcations Fold and flip bifurcations Embedding Difeomorfismo |
description |
In this paper, we study the dynamics and bifurcation properties of a three-parameter family of 1D Gompertz’s growth functions, which are defined by the population size functions of the Gompertz logistic growth equation. The dynamical behavior is complex leading to a diversified bifurcation structure, leading to the big bang bifurcations of the so-called “box-within-a-box” fractal type. We provide and discuss sufficient conditions for the existence of these bifurcation cascades for 1D Gompertz’s growth functions. Moreover, this work concerns the description of some bifurcation properties of a Hénon’s map type embedding: a “continuous” embedding of 1D Gompertz’s growth functions into a 2D diffeomorphism. More particularly, properties that characterize the big bang bifurcations are considered in relation with this coupling of two population size functions, varying the embedding parameter. The existence of communication areas of crossroad area type or swallowtails are identified for this 2D diffeomorphism. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-10 2016-10-01T00:00:00Z 2017-07-18T10:10:53Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.21/7274 |
url |
http://hdl.handle.net/10400.21/7274 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
ROCHA, J. Leonel; TAHA, Abdel-Kaddous; FOURNIER-PRUNARET,D. - Dynamical Analysis and Big Bang Bifurcations of 1D and 2D Gompertz’s Growth Functions. International Journal of Bifurcation and Chaos. ISSN 0218-1274. Vol. 26, N. º11, (2016), pp. 1-22 0218-1274 10.1142/S0218127416300305 |
dc.rights.driver.fl_str_mv |
metadata only access info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
metadata only access |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
World Scientific Publishing |
publisher.none.fl_str_mv |
World Scientific Publishing |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133421999489024 |