Eigenvalue computations in the context of data-sparse approximations of integral operators

Detalhes bibliográficos
Autor(a) principal: Roman, J. E.
Data de Publicação: 2013
Outros Autores: Vasconcelos, P. B., Nunes, A. L.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/11110/570
Resumo: In this work, we consider the numerical solution of a large eigenvalue problem resulting from a finite rank discretization of an integral operator. We are interested in computing a few eigenpairs, with an iterative method, so a matrix representation that allows for fast matrix-vector products is required. Hierarchical matrices are appropriate for this setting, and also provide cheap LU decompositions required in the spectral transformation technique. We illustrate the use of freely available software tools to address the problem, in particular SLEPc for the eigensolvers and HLib for the construction of H-matrices. The numerical tests are performed using an astrophysics application. Results show the benefits of the data-sparse representation compared to standard storage schemes, in terms of computational cost as well as memory requirements.
id RCAP_2f5a550180f9dadec7e2824349a490ac
oai_identifier_str oai:ciencipca.ipca.pt:11110/570
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Eigenvalue computations in the context of data-sparse approximations of integral operatorsIterative eigensolversIntegral operatorHierarchical matricesNumerical librariesIn this work, we consider the numerical solution of a large eigenvalue problem resulting from a finite rank discretization of an integral operator. We are interested in computing a few eigenpairs, with an iterative method, so a matrix representation that allows for fast matrix-vector products is required. Hierarchical matrices are appropriate for this setting, and also provide cheap LU decompositions required in the spectral transformation technique. We illustrate the use of freely available software tools to address the problem, in particular SLEPc for the eigensolvers and HLib for the construction of H-matrices. The numerical tests are performed using an astrophysics application. Results show the benefits of the data-sparse representation compared to standard storage schemes, in terms of computational cost as well as memory requirements.This work was partially supported by the Spanish Ministerio de Ciencia e Innovación under projects TIN2009-07519, TIN2012-32846 and AIC10-D-000600 and by Fundação para a Ciência e a Tecnologia — FCT under project FCT/MICINN proc441.00.Journal of Computational and Applied Mathematics2013-12-30T12:21:24Z2013-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/11110/570oai:ciencipca.ipca.pt:11110/570eng0377-0427http://hdl.handle.net/11110/570metadata only accessinfo:eu-repo/semantics/openAccessRoman, J. E.Vasconcelos, P. B.Nunes, A. L.reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2022-09-05T12:52:09Zoai:ciencipca.ipca.pt:11110/570Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T15:01:02.559687Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Eigenvalue computations in the context of data-sparse approximations of integral operators
title Eigenvalue computations in the context of data-sparse approximations of integral operators
spellingShingle Eigenvalue computations in the context of data-sparse approximations of integral operators
Roman, J. E.
Iterative eigensolvers
Integral operator
Hierarchical matrices
Numerical libraries
title_short Eigenvalue computations in the context of data-sparse approximations of integral operators
title_full Eigenvalue computations in the context of data-sparse approximations of integral operators
title_fullStr Eigenvalue computations in the context of data-sparse approximations of integral operators
title_full_unstemmed Eigenvalue computations in the context of data-sparse approximations of integral operators
title_sort Eigenvalue computations in the context of data-sparse approximations of integral operators
author Roman, J. E.
author_facet Roman, J. E.
Vasconcelos, P. B.
Nunes, A. L.
author_role author
author2 Vasconcelos, P. B.
Nunes, A. L.
author2_role author
author
dc.contributor.author.fl_str_mv Roman, J. E.
Vasconcelos, P. B.
Nunes, A. L.
dc.subject.por.fl_str_mv Iterative eigensolvers
Integral operator
Hierarchical matrices
Numerical libraries
topic Iterative eigensolvers
Integral operator
Hierarchical matrices
Numerical libraries
description In this work, we consider the numerical solution of a large eigenvalue problem resulting from a finite rank discretization of an integral operator. We are interested in computing a few eigenpairs, with an iterative method, so a matrix representation that allows for fast matrix-vector products is required. Hierarchical matrices are appropriate for this setting, and also provide cheap LU decompositions required in the spectral transformation technique. We illustrate the use of freely available software tools to address the problem, in particular SLEPc for the eigensolvers and HLib for the construction of H-matrices. The numerical tests are performed using an astrophysics application. Results show the benefits of the data-sparse representation compared to standard storage schemes, in terms of computational cost as well as memory requirements.
publishDate 2013
dc.date.none.fl_str_mv 2013-12-30T12:21:24Z
2013-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/11110/570
oai:ciencipca.ipca.pt:11110/570
url http://hdl.handle.net/11110/570
identifier_str_mv oai:ciencipca.ipca.pt:11110/570
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0377-0427
http://hdl.handle.net/11110/570
dc.rights.driver.fl_str_mv metadata only access
info:eu-repo/semantics/openAccess
rights_invalid_str_mv metadata only access
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Journal of Computational and Applied Mathematics
publisher.none.fl_str_mv Journal of Computational and Applied Mathematics
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799129879941218304