Eigenvalue computations in the context of data-sparse approximations of integral operators
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/11110/570 |
Resumo: | In this work, we consider the numerical solution of a large eigenvalue problem resulting from a finite rank discretization of an integral operator. We are interested in computing a few eigenpairs, with an iterative method, so a matrix representation that allows for fast matrix-vector products is required. Hierarchical matrices are appropriate for this setting, and also provide cheap LU decompositions required in the spectral transformation technique. We illustrate the use of freely available software tools to address the problem, in particular SLEPc for the eigensolvers and HLib for the construction of H-matrices. The numerical tests are performed using an astrophysics application. Results show the benefits of the data-sparse representation compared to standard storage schemes, in terms of computational cost as well as memory requirements. |
id |
RCAP_2f5a550180f9dadec7e2824349a490ac |
---|---|
oai_identifier_str |
oai:ciencipca.ipca.pt:11110/570 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Eigenvalue computations in the context of data-sparse approximations of integral operatorsIterative eigensolversIntegral operatorHierarchical matricesNumerical librariesIn this work, we consider the numerical solution of a large eigenvalue problem resulting from a finite rank discretization of an integral operator. We are interested in computing a few eigenpairs, with an iterative method, so a matrix representation that allows for fast matrix-vector products is required. Hierarchical matrices are appropriate for this setting, and also provide cheap LU decompositions required in the spectral transformation technique. We illustrate the use of freely available software tools to address the problem, in particular SLEPc for the eigensolvers and HLib for the construction of H-matrices. The numerical tests are performed using an astrophysics application. Results show the benefits of the data-sparse representation compared to standard storage schemes, in terms of computational cost as well as memory requirements.This work was partially supported by the Spanish Ministerio de Ciencia e Innovación under projects TIN2009-07519, TIN2012-32846 and AIC10-D-000600 and by Fundação para a Ciência e a Tecnologia — FCT under project FCT/MICINN proc441.00.Journal of Computational and Applied Mathematics2013-12-30T12:21:24Z2013-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/11110/570oai:ciencipca.ipca.pt:11110/570eng0377-0427http://hdl.handle.net/11110/570metadata only accessinfo:eu-repo/semantics/openAccessRoman, J. E.Vasconcelos, P. B.Nunes, A. L.reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2022-09-05T12:52:09Zoai:ciencipca.ipca.pt:11110/570Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T15:01:02.559687Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Eigenvalue computations in the context of data-sparse approximations of integral operators |
title |
Eigenvalue computations in the context of data-sparse approximations of integral operators |
spellingShingle |
Eigenvalue computations in the context of data-sparse approximations of integral operators Roman, J. E. Iterative eigensolvers Integral operator Hierarchical matrices Numerical libraries |
title_short |
Eigenvalue computations in the context of data-sparse approximations of integral operators |
title_full |
Eigenvalue computations in the context of data-sparse approximations of integral operators |
title_fullStr |
Eigenvalue computations in the context of data-sparse approximations of integral operators |
title_full_unstemmed |
Eigenvalue computations in the context of data-sparse approximations of integral operators |
title_sort |
Eigenvalue computations in the context of data-sparse approximations of integral operators |
author |
Roman, J. E. |
author_facet |
Roman, J. E. Vasconcelos, P. B. Nunes, A. L. |
author_role |
author |
author2 |
Vasconcelos, P. B. Nunes, A. L. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Roman, J. E. Vasconcelos, P. B. Nunes, A. L. |
dc.subject.por.fl_str_mv |
Iterative eigensolvers Integral operator Hierarchical matrices Numerical libraries |
topic |
Iterative eigensolvers Integral operator Hierarchical matrices Numerical libraries |
description |
In this work, we consider the numerical solution of a large eigenvalue problem resulting from a finite rank discretization of an integral operator. We are interested in computing a few eigenpairs, with an iterative method, so a matrix representation that allows for fast matrix-vector products is required. Hierarchical matrices are appropriate for this setting, and also provide cheap LU decompositions required in the spectral transformation technique. We illustrate the use of freely available software tools to address the problem, in particular SLEPc for the eigensolvers and HLib for the construction of H-matrices. The numerical tests are performed using an astrophysics application. Results show the benefits of the data-sparse representation compared to standard storage schemes, in terms of computational cost as well as memory requirements. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-12-30T12:21:24Z 2013-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/11110/570 oai:ciencipca.ipca.pt:11110/570 |
url |
http://hdl.handle.net/11110/570 |
identifier_str_mv |
oai:ciencipca.ipca.pt:11110/570 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0377-0427 http://hdl.handle.net/11110/570 |
dc.rights.driver.fl_str_mv |
metadata only access info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
metadata only access |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Journal of Computational and Applied Mathematics |
publisher.none.fl_str_mv |
Journal of Computational and Applied Mathematics |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799129879941218304 |