Error bounds for low-rank approximations of the first exponential integral kernel
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/11110/569 |
Resumo: | A hierarchical matrix is an efficient data-sparse representation of a matrix, especially useful for large dimensional problems. It consists of low-rank subblocks leading to low memory requirements as well as inexpensive computational costs. In this work, we discuss the use of the hierarchical matrix technique in the numerical solution of a large scale eigenvalue problem arising from a finite rank discretization of an integral operator. The operator is of convolution type, it is defined through the first exponential-integral function and, hence, it is weakly singular. We develop analytical expressions for the approximate degenerate kernels and deduce error upper bounds for these approximations. Some computational results illustrating the efficiency and robustness of the approach are presented. |
id |
RCAP_3ba1deb1d7f5983cc3a7e0d51904550a |
---|---|
oai_identifier_str |
oai:ciencipca.ipca.pt:11110/569 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Error bounds for low-rank approximations of the first exponential integral kernelHierarchical matrices;Integral operatorsProjection approximationSpectral computationsWeakly singular kernelA hierarchical matrix is an efficient data-sparse representation of a matrix, especially useful for large dimensional problems. It consists of low-rank subblocks leading to low memory requirements as well as inexpensive computational costs. In this work, we discuss the use of the hierarchical matrix technique in the numerical solution of a large scale eigenvalue problem arising from a finite rank discretization of an integral operator. The operator is of convolution type, it is defined through the first exponential-integral function and, hence, it is weakly singular. We develop analytical expressions for the approximate degenerate kernels and deduce error upper bounds for these approximations. Some computational results illustrating the efficiency and robustness of the approach are presented.This work was partially supported by CRUP-Acções Universitárias Integradas Luso-Francesas PAUILF 2011 under project F-TCO3/11 and by PROTEC from FCT under project SFRH/BD/49394/2009.Numerical Functional Analysis and Optimization2013-12-30T12:17:42Z2013-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/11110/569oai:ciencipca.ipca.pt:11110/569eng0163-0563http://hdl.handle.net/11110/569metadata only accessinfo:eu-repo/semantics/openAccessNunes, A. L.Vasconcelos, P. B.Ahues, M.reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2022-09-05T12:52:09Zoai:ciencipca.ipca.pt:11110/569Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T15:01:02.611178Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Error bounds for low-rank approximations of the first exponential integral kernel |
title |
Error bounds for low-rank approximations of the first exponential integral kernel |
spellingShingle |
Error bounds for low-rank approximations of the first exponential integral kernel Nunes, A. L. Hierarchical matrices; Integral operators Projection approximation Spectral computations Weakly singular kernel |
title_short |
Error bounds for low-rank approximations of the first exponential integral kernel |
title_full |
Error bounds for low-rank approximations of the first exponential integral kernel |
title_fullStr |
Error bounds for low-rank approximations of the first exponential integral kernel |
title_full_unstemmed |
Error bounds for low-rank approximations of the first exponential integral kernel |
title_sort |
Error bounds for low-rank approximations of the first exponential integral kernel |
author |
Nunes, A. L. |
author_facet |
Nunes, A. L. Vasconcelos, P. B. Ahues, M. |
author_role |
author |
author2 |
Vasconcelos, P. B. Ahues, M. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Nunes, A. L. Vasconcelos, P. B. Ahues, M. |
dc.subject.por.fl_str_mv |
Hierarchical matrices; Integral operators Projection approximation Spectral computations Weakly singular kernel |
topic |
Hierarchical matrices; Integral operators Projection approximation Spectral computations Weakly singular kernel |
description |
A hierarchical matrix is an efficient data-sparse representation of a matrix, especially useful for large dimensional problems. It consists of low-rank subblocks leading to low memory requirements as well as inexpensive computational costs. In this work, we discuss the use of the hierarchical matrix technique in the numerical solution of a large scale eigenvalue problem arising from a finite rank discretization of an integral operator. The operator is of convolution type, it is defined through the first exponential-integral function and, hence, it is weakly singular. We develop analytical expressions for the approximate degenerate kernels and deduce error upper bounds for these approximations. Some computational results illustrating the efficiency and robustness of the approach are presented. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-12-30T12:17:42Z 2013-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/11110/569 oai:ciencipca.ipca.pt:11110/569 |
url |
http://hdl.handle.net/11110/569 |
identifier_str_mv |
oai:ciencipca.ipca.pt:11110/569 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0163-0563 http://hdl.handle.net/11110/569 |
dc.rights.driver.fl_str_mv |
metadata only access info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
metadata only access |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Numerical Functional Analysis and Optimization |
publisher.none.fl_str_mv |
Numerical Functional Analysis and Optimization |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799129879942266880 |