Error bounds for low-rank approximations of the first exponential integral kernel

Detalhes bibliográficos
Autor(a) principal: Nunes, A. L.
Data de Publicação: 2013
Outros Autores: Vasconcelos, P. B., Ahues, M.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/11110/569
Resumo: A hierarchical matrix is an efficient data-sparse representation of a matrix, especially useful for large dimensional problems. It consists of low-rank subblocks leading to low memory requirements as well as inexpensive computational costs. In this work, we discuss the use of the hierarchical matrix technique in the numerical solution of a large scale eigenvalue problem arising from a finite rank discretization of an integral operator. The operator is of convolution type, it is defined through the first exponential-integral function and, hence, it is weakly singular. We develop analytical expressions for the approximate degenerate kernels and deduce error upper bounds for these approximations. Some computational results illustrating the efficiency and robustness of the approach are presented.
id RCAP_3ba1deb1d7f5983cc3a7e0d51904550a
oai_identifier_str oai:ciencipca.ipca.pt:11110/569
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Error bounds for low-rank approximations of the first exponential integral kernelHierarchical matrices;Integral operatorsProjection approximationSpectral computationsWeakly singular kernelA hierarchical matrix is an efficient data-sparse representation of a matrix, especially useful for large dimensional problems. It consists of low-rank subblocks leading to low memory requirements as well as inexpensive computational costs. In this work, we discuss the use of the hierarchical matrix technique in the numerical solution of a large scale eigenvalue problem arising from a finite rank discretization of an integral operator. The operator is of convolution type, it is defined through the first exponential-integral function and, hence, it is weakly singular. We develop analytical expressions for the approximate degenerate kernels and deduce error upper bounds for these approximations. Some computational results illustrating the efficiency and robustness of the approach are presented.This work was partially supported by CRUP-Acções Universitárias Integradas Luso-Francesas PAUILF 2011 under project F-TCO3/11 and by PROTEC from FCT under project SFRH/BD/49394/2009.Numerical Functional Analysis and Optimization2013-12-30T12:17:42Z2013-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/11110/569oai:ciencipca.ipca.pt:11110/569eng0163-0563http://hdl.handle.net/11110/569metadata only accessinfo:eu-repo/semantics/openAccessNunes, A. L.Vasconcelos, P. B.Ahues, M.reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2022-09-05T12:52:09Zoai:ciencipca.ipca.pt:11110/569Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T15:01:02.611178Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Error bounds for low-rank approximations of the first exponential integral kernel
title Error bounds for low-rank approximations of the first exponential integral kernel
spellingShingle Error bounds for low-rank approximations of the first exponential integral kernel
Nunes, A. L.
Hierarchical matrices;
Integral operators
Projection approximation
Spectral computations
Weakly singular kernel
title_short Error bounds for low-rank approximations of the first exponential integral kernel
title_full Error bounds for low-rank approximations of the first exponential integral kernel
title_fullStr Error bounds for low-rank approximations of the first exponential integral kernel
title_full_unstemmed Error bounds for low-rank approximations of the first exponential integral kernel
title_sort Error bounds for low-rank approximations of the first exponential integral kernel
author Nunes, A. L.
author_facet Nunes, A. L.
Vasconcelos, P. B.
Ahues, M.
author_role author
author2 Vasconcelos, P. B.
Ahues, M.
author2_role author
author
dc.contributor.author.fl_str_mv Nunes, A. L.
Vasconcelos, P. B.
Ahues, M.
dc.subject.por.fl_str_mv Hierarchical matrices;
Integral operators
Projection approximation
Spectral computations
Weakly singular kernel
topic Hierarchical matrices;
Integral operators
Projection approximation
Spectral computations
Weakly singular kernel
description A hierarchical matrix is an efficient data-sparse representation of a matrix, especially useful for large dimensional problems. It consists of low-rank subblocks leading to low memory requirements as well as inexpensive computational costs. In this work, we discuss the use of the hierarchical matrix technique in the numerical solution of a large scale eigenvalue problem arising from a finite rank discretization of an integral operator. The operator is of convolution type, it is defined through the first exponential-integral function and, hence, it is weakly singular. We develop analytical expressions for the approximate degenerate kernels and deduce error upper bounds for these approximations. Some computational results illustrating the efficiency and robustness of the approach are presented.
publishDate 2013
dc.date.none.fl_str_mv 2013-12-30T12:17:42Z
2013-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/11110/569
oai:ciencipca.ipca.pt:11110/569
url http://hdl.handle.net/11110/569
identifier_str_mv oai:ciencipca.ipca.pt:11110/569
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0163-0563
http://hdl.handle.net/11110/569
dc.rights.driver.fl_str_mv metadata only access
info:eu-repo/semantics/openAccess
rights_invalid_str_mv metadata only access
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Numerical Functional Analysis and Optimization
publisher.none.fl_str_mv Numerical Functional Analysis and Optimization
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799129879942266880