Variational and quasivariational inequalities with first order constraints
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/1822/20392 |
Resumo: | We study the existence of solutions of stationary variational and quasivariational inequalities with curl constraint, Neumann type boundary condition and a p-curl type operator. These problems are studied in bounded, not necessarily simply connected domains, with a special geometry, and the functional framework is the space of divergence-free functions with curl in $\boldsymbol L^p$ and null tangential or normal traces. The analogous variational or quasivariational inequalities with a gradient constraint are also studied, considering Neumann or Dirichlet non-homogeneous boundary conditions. The existence of a generalized solution for a Lagrange multiplier problem with homogeneous Dirichlet boundary condition and the equivalence with the variational inequality is proved in the linear case, for an arbitrary gradient constraint. |
id |
RCAP_2f94fd0c513ec0aeccbe8e741ee0bc2e |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/20392 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Variational and quasivariational inequalities with first order constraintsVariational inequalityQuasivariational inequalityLagrange multiplierScience & TechnologyWe study the existence of solutions of stationary variational and quasivariational inequalities with curl constraint, Neumann type boundary condition and a p-curl type operator. These problems are studied in bounded, not necessarily simply connected domains, with a special geometry, and the functional framework is the space of divergence-free functions with curl in $\boldsymbol L^p$ and null tangential or normal traces. The analogous variational or quasivariational inequalities with a gradient constraint are also studied, considering Neumann or Dirichlet non-homogeneous boundary conditions. The existence of a generalized solution for a Lagrange multiplier problem with homogeneous Dirichlet boundary condition and the equivalence with the variational inequality is proved in the linear case, for an arbitrary gradient constraint.This research was partially supported by CMAT - "Centro de Matematica da Universidade do Minho", financed by FEDER Funds through "Programa Operacional Factores de Competitividade - COMPETE" and by Portuguese Funds through FCT - "Fundacao para a Ciencia e a Tecnologia", within the Project Est-C/MAT/UI0013/2011.ElsevierUniversidade do MinhoAzevedo, AssisMiranda, FernandoSantos, Lisa20132013-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/20392eng0022-247X10.1016/j.jmaa.2012.07.033http://dx.doi.org/10.1016/j.jmaa.2012.07.033info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:00:41Zoai:repositorium.sdum.uminho.pt:1822/20392Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T18:50:32.929760Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Variational and quasivariational inequalities with first order constraints |
title |
Variational and quasivariational inequalities with first order constraints |
spellingShingle |
Variational and quasivariational inequalities with first order constraints Azevedo, Assis Variational inequality Quasivariational inequality Lagrange multiplier Science & Technology |
title_short |
Variational and quasivariational inequalities with first order constraints |
title_full |
Variational and quasivariational inequalities with first order constraints |
title_fullStr |
Variational and quasivariational inequalities with first order constraints |
title_full_unstemmed |
Variational and quasivariational inequalities with first order constraints |
title_sort |
Variational and quasivariational inequalities with first order constraints |
author |
Azevedo, Assis |
author_facet |
Azevedo, Assis Miranda, Fernando Santos, Lisa |
author_role |
author |
author2 |
Miranda, Fernando Santos, Lisa |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Azevedo, Assis Miranda, Fernando Santos, Lisa |
dc.subject.por.fl_str_mv |
Variational inequality Quasivariational inequality Lagrange multiplier Science & Technology |
topic |
Variational inequality Quasivariational inequality Lagrange multiplier Science & Technology |
description |
We study the existence of solutions of stationary variational and quasivariational inequalities with curl constraint, Neumann type boundary condition and a p-curl type operator. These problems are studied in bounded, not necessarily simply connected domains, with a special geometry, and the functional framework is the space of divergence-free functions with curl in $\boldsymbol L^p$ and null tangential or normal traces. The analogous variational or quasivariational inequalities with a gradient constraint are also studied, considering Neumann or Dirichlet non-homogeneous boundary conditions. The existence of a generalized solution for a Lagrange multiplier problem with homogeneous Dirichlet boundary condition and the equivalence with the variational inequality is proved in the linear case, for an arbitrary gradient constraint. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013 2013-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/20392 |
url |
http://hdl.handle.net/1822/20392 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0022-247X 10.1016/j.jmaa.2012.07.033 http://dx.doi.org/10.1016/j.jmaa.2012.07.033 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799132274071961601 |