Evolutionary quasi-variational and variational inequalities with constraints on the derivatives

Detalhes bibliográficos
Autor(a) principal: Miranda, Fernando
Data de Publicação: 2020
Outros Autores: Rodrigues, Jose Francisco, Santos, Lisa
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/1822/65606
Resumo: This paper considers a general framework for the study of the existence of quasi-variational and variational solutions to a class of nonlinear evolution systems in convex sets of Banach spaces describing constraints on a linear combination of partial derivatives of the solutions. The quasi-linear operators are of monotone type, but are not required to be coercive for the existence of weak solutions, which is obtained by a double penalization/regularization for the approximation of the solutions. In the case of time-dependent convex sets that are independent of the solution, we show also the uniqueness and the continuous dependence of the strong solutions of the variational inequalities, extending previous results to a more general framework.
id RCAP_457a3a0626af6a7b760891bdda019033
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/65606
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Evolutionary quasi-variational and variational inequalities with constraints on the derivativesconstraints on the derivativesEvolutionary quasi-variational inequalitiesgradient constraintsCiências Naturais::MatemáticasScience & TechnologyThis paper considers a general framework for the study of the existence of quasi-variational and variational solutions to a class of nonlinear evolution systems in convex sets of Banach spaces describing constraints on a linear combination of partial derivatives of the solutions. The quasi-linear operators are of monotone type, but are not required to be coercive for the existence of weak solutions, which is obtained by a double penalization/regularization for the approximation of the solutions. In the case of time-dependent convex sets that are independent of the solution, we show also the uniqueness and the continuous dependence of the strong solutions of the variational inequalities, extending previous results to a more general framework.- (undefined)De GruyterUniversidade do MinhoMiranda, FernandoRodrigues, Jose FranciscoSantos, Lisa20202020-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/65606eng2191-949610.1515/anona-2018-0113https://www.degruyter.com/view/journals/anona/9/1/article-p250.xmlinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:25:54Zoai:repositorium.sdum.uminho.pt:1822/65606Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:20:12.963492Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Evolutionary quasi-variational and variational inequalities with constraints on the derivatives
title Evolutionary quasi-variational and variational inequalities with constraints on the derivatives
spellingShingle Evolutionary quasi-variational and variational inequalities with constraints on the derivatives
Miranda, Fernando
constraints on the derivatives
Evolutionary quasi-variational inequalities
gradient constraints
Ciências Naturais::Matemáticas
Science & Technology
title_short Evolutionary quasi-variational and variational inequalities with constraints on the derivatives
title_full Evolutionary quasi-variational and variational inequalities with constraints on the derivatives
title_fullStr Evolutionary quasi-variational and variational inequalities with constraints on the derivatives
title_full_unstemmed Evolutionary quasi-variational and variational inequalities with constraints on the derivatives
title_sort Evolutionary quasi-variational and variational inequalities with constraints on the derivatives
author Miranda, Fernando
author_facet Miranda, Fernando
Rodrigues, Jose Francisco
Santos, Lisa
author_role author
author2 Rodrigues, Jose Francisco
Santos, Lisa
author2_role author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Miranda, Fernando
Rodrigues, Jose Francisco
Santos, Lisa
dc.subject.por.fl_str_mv constraints on the derivatives
Evolutionary quasi-variational inequalities
gradient constraints
Ciências Naturais::Matemáticas
Science & Technology
topic constraints on the derivatives
Evolutionary quasi-variational inequalities
gradient constraints
Ciências Naturais::Matemáticas
Science & Technology
description This paper considers a general framework for the study of the existence of quasi-variational and variational solutions to a class of nonlinear evolution systems in convex sets of Banach spaces describing constraints on a linear combination of partial derivatives of the solutions. The quasi-linear operators are of monotone type, but are not required to be coercive for the existence of weak solutions, which is obtained by a double penalization/regularization for the approximation of the solutions. In the case of time-dependent convex sets that are independent of the solution, we show also the uniqueness and the continuous dependence of the strong solutions of the variational inequalities, extending previous results to a more general framework.
publishDate 2020
dc.date.none.fl_str_mv 2020
2020-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/65606
url http://hdl.handle.net/1822/65606
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2191-9496
10.1515/anona-2018-0113
https://www.degruyter.com/view/journals/anona/9/1/article-p250.xml
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv De Gruyter
publisher.none.fl_str_mv De Gruyter
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799132663855972352