Evolutionary quasi-variational and variational inequalities with constraints on the derivatives
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/1822/65606 |
Resumo: | This paper considers a general framework for the study of the existence of quasi-variational and variational solutions to a class of nonlinear evolution systems in convex sets of Banach spaces describing constraints on a linear combination of partial derivatives of the solutions. The quasi-linear operators are of monotone type, but are not required to be coercive for the existence of weak solutions, which is obtained by a double penalization/regularization for the approximation of the solutions. In the case of time-dependent convex sets that are independent of the solution, we show also the uniqueness and the continuous dependence of the strong solutions of the variational inequalities, extending previous results to a more general framework. |
id |
RCAP_457a3a0626af6a7b760891bdda019033 |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/65606 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Evolutionary quasi-variational and variational inequalities with constraints on the derivativesconstraints on the derivativesEvolutionary quasi-variational inequalitiesgradient constraintsCiências Naturais::MatemáticasScience & TechnologyThis paper considers a general framework for the study of the existence of quasi-variational and variational solutions to a class of nonlinear evolution systems in convex sets of Banach spaces describing constraints on a linear combination of partial derivatives of the solutions. The quasi-linear operators are of monotone type, but are not required to be coercive for the existence of weak solutions, which is obtained by a double penalization/regularization for the approximation of the solutions. In the case of time-dependent convex sets that are independent of the solution, we show also the uniqueness and the continuous dependence of the strong solutions of the variational inequalities, extending previous results to a more general framework.- (undefined)De GruyterUniversidade do MinhoMiranda, FernandoRodrigues, Jose FranciscoSantos, Lisa20202020-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/65606eng2191-949610.1515/anona-2018-0113https://www.degruyter.com/view/journals/anona/9/1/article-p250.xmlinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:25:54Zoai:repositorium.sdum.uminho.pt:1822/65606Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:20:12.963492Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Evolutionary quasi-variational and variational inequalities with constraints on the derivatives |
title |
Evolutionary quasi-variational and variational inequalities with constraints on the derivatives |
spellingShingle |
Evolutionary quasi-variational and variational inequalities with constraints on the derivatives Miranda, Fernando constraints on the derivatives Evolutionary quasi-variational inequalities gradient constraints Ciências Naturais::Matemáticas Science & Technology |
title_short |
Evolutionary quasi-variational and variational inequalities with constraints on the derivatives |
title_full |
Evolutionary quasi-variational and variational inequalities with constraints on the derivatives |
title_fullStr |
Evolutionary quasi-variational and variational inequalities with constraints on the derivatives |
title_full_unstemmed |
Evolutionary quasi-variational and variational inequalities with constraints on the derivatives |
title_sort |
Evolutionary quasi-variational and variational inequalities with constraints on the derivatives |
author |
Miranda, Fernando |
author_facet |
Miranda, Fernando Rodrigues, Jose Francisco Santos, Lisa |
author_role |
author |
author2 |
Rodrigues, Jose Francisco Santos, Lisa |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Miranda, Fernando Rodrigues, Jose Francisco Santos, Lisa |
dc.subject.por.fl_str_mv |
constraints on the derivatives Evolutionary quasi-variational inequalities gradient constraints Ciências Naturais::Matemáticas Science & Technology |
topic |
constraints on the derivatives Evolutionary quasi-variational inequalities gradient constraints Ciências Naturais::Matemáticas Science & Technology |
description |
This paper considers a general framework for the study of the existence of quasi-variational and variational solutions to a class of nonlinear evolution systems in convex sets of Banach spaces describing constraints on a linear combination of partial derivatives of the solutions. The quasi-linear operators are of monotone type, but are not required to be coercive for the existence of weak solutions, which is obtained by a double penalization/regularization for the approximation of the solutions. In the case of time-dependent convex sets that are independent of the solution, we show also the uniqueness and the continuous dependence of the strong solutions of the variational inequalities, extending previous results to a more general framework. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020 2020-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/65606 |
url |
http://hdl.handle.net/1822/65606 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2191-9496 10.1515/anona-2018-0113 https://www.degruyter.com/view/journals/anona/9/1/article-p250.xml |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
De Gruyter |
publisher.none.fl_str_mv |
De Gruyter |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799132663855972352 |