Separated and Connected Maps

Detalhes bibliográficos
Autor(a) principal: Clementino, Maria Manuel
Data de Publicação: 1998
Outros Autores: Tholen, Walter
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10316/7758
https://doi.org/10.1023/A:1008636615842
Resumo: Using on the one hand closure operators in the sense of Dikranjan and Giuli and on the other hand left- and right-constant subcategories in the sense of Herrlich, Preuß, Arhangel'skii and Wiegandt, we apply two categorical concepts of connectedness and separation/disconnectedness to comma categories in order to introduce these notions for morphisms of a category and to study their factorization behaviour. While at the object level in categories with enough points the first approach exceeds the second considerably, as far as generality is concerned, the two approaches become quite distinct at the morphism level. In fact, left- and right-constant subcategories lead to a straight generalization of Collins' concordant and dissonant maps in the category $$\mathcal{T}op$$ of topological spaces. By contrast, closure operators are neither able to describe these types of maps in $$\mathcal{T}op$$, nor the more classical monotone and light maps of Eilenberg and Whyburn, although they give all sorts of interesting and closely related types of maps. As a by-product we obtain a negative solution to the ten-year-old problem whether the Giuli–Hušek Diagonal Theorem holds true in every decent category, and exhibit a counter-example in the category of topological spaces over the 1-sphere.
id RCAP_2fb8f5e777b8485a1129eef6a043e1c0
oai_identifier_str oai:estudogeral.uc.pt:10316/7758
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Separated and Connected MapsUsing on the one hand closure operators in the sense of Dikranjan and Giuli and on the other hand left- and right-constant subcategories in the sense of Herrlich, Preuß, Arhangel'skii and Wiegandt, we apply two categorical concepts of connectedness and separation/disconnectedness to comma categories in order to introduce these notions for morphisms of a category and to study their factorization behaviour. While at the object level in categories with enough points the first approach exceeds the second considerably, as far as generality is concerned, the two approaches become quite distinct at the morphism level. In fact, left- and right-constant subcategories lead to a straight generalization of Collins' concordant and dissonant maps in the category $$\mathcal{T}op$$ of topological spaces. By contrast, closure operators are neither able to describe these types of maps in $$\mathcal{T}op$$, nor the more classical monotone and light maps of Eilenberg and Whyburn, although they give all sorts of interesting and closely related types of maps. As a by-product we obtain a negative solution to the ten-year-old problem whether the Giuli–Hušek Diagonal Theorem holds true in every decent category, and exhibit a counter-example in the category of topological spaces over the 1-sphere.1998info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/7758http://hdl.handle.net/10316/7758https://doi.org/10.1023/A:1008636615842engApplied Categorical Structures. 6:3 (1998) 373-401Clementino, Maria ManuelTholen, Walterinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2020-01-21T10:18:22Zoai:estudogeral.uc.pt:10316/7758Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:00:43.959302Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Separated and Connected Maps
title Separated and Connected Maps
spellingShingle Separated and Connected Maps
Clementino, Maria Manuel
title_short Separated and Connected Maps
title_full Separated and Connected Maps
title_fullStr Separated and Connected Maps
title_full_unstemmed Separated and Connected Maps
title_sort Separated and Connected Maps
author Clementino, Maria Manuel
author_facet Clementino, Maria Manuel
Tholen, Walter
author_role author
author2 Tholen, Walter
author2_role author
dc.contributor.author.fl_str_mv Clementino, Maria Manuel
Tholen, Walter
description Using on the one hand closure operators in the sense of Dikranjan and Giuli and on the other hand left- and right-constant subcategories in the sense of Herrlich, Preuß, Arhangel'skii and Wiegandt, we apply two categorical concepts of connectedness and separation/disconnectedness to comma categories in order to introduce these notions for morphisms of a category and to study their factorization behaviour. While at the object level in categories with enough points the first approach exceeds the second considerably, as far as generality is concerned, the two approaches become quite distinct at the morphism level. In fact, left- and right-constant subcategories lead to a straight generalization of Collins' concordant and dissonant maps in the category $$\mathcal{T}op$$ of topological spaces. By contrast, closure operators are neither able to describe these types of maps in $$\mathcal{T}op$$, nor the more classical monotone and light maps of Eilenberg and Whyburn, although they give all sorts of interesting and closely related types of maps. As a by-product we obtain a negative solution to the ten-year-old problem whether the Giuli–Hušek Diagonal Theorem holds true in every decent category, and exhibit a counter-example in the category of topological spaces over the 1-sphere.
publishDate 1998
dc.date.none.fl_str_mv 1998
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10316/7758
http://hdl.handle.net/10316/7758
https://doi.org/10.1023/A:1008636615842
url http://hdl.handle.net/10316/7758
https://doi.org/10.1023/A:1008636615842
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Applied Categorical Structures. 6:3 (1998) 373-401
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133897603153920