Separated and Connected Maps
Autor(a) principal: | |
---|---|
Data de Publicação: | 1998 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10316/7758 https://doi.org/10.1023/A:1008636615842 |
Resumo: | Using on the one hand closure operators in the sense of Dikranjan and Giuli and on the other hand left- and right-constant subcategories in the sense of Herrlich, Preuß, Arhangel'skii and Wiegandt, we apply two categorical concepts of connectedness and separation/disconnectedness to comma categories in order to introduce these notions for morphisms of a category and to study their factorization behaviour. While at the object level in categories with enough points the first approach exceeds the second considerably, as far as generality is concerned, the two approaches become quite distinct at the morphism level. In fact, left- and right-constant subcategories lead to a straight generalization of Collins' concordant and dissonant maps in the category $$\mathcal{T}op$$ of topological spaces. By contrast, closure operators are neither able to describe these types of maps in $$\mathcal{T}op$$, nor the more classical monotone and light maps of Eilenberg and Whyburn, although they give all sorts of interesting and closely related types of maps. As a by-product we obtain a negative solution to the ten-year-old problem whether the Giuli–Hušek Diagonal Theorem holds true in every decent category, and exhibit a counter-example in the category of topological spaces over the 1-sphere. |
id |
RCAP_2fb8f5e777b8485a1129eef6a043e1c0 |
---|---|
oai_identifier_str |
oai:estudogeral.uc.pt:10316/7758 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Separated and Connected MapsUsing on the one hand closure operators in the sense of Dikranjan and Giuli and on the other hand left- and right-constant subcategories in the sense of Herrlich, Preuß, Arhangel'skii and Wiegandt, we apply two categorical concepts of connectedness and separation/disconnectedness to comma categories in order to introduce these notions for morphisms of a category and to study their factorization behaviour. While at the object level in categories with enough points the first approach exceeds the second considerably, as far as generality is concerned, the two approaches become quite distinct at the morphism level. In fact, left- and right-constant subcategories lead to a straight generalization of Collins' concordant and dissonant maps in the category $$\mathcal{T}op$$ of topological spaces. By contrast, closure operators are neither able to describe these types of maps in $$\mathcal{T}op$$, nor the more classical monotone and light maps of Eilenberg and Whyburn, although they give all sorts of interesting and closely related types of maps. As a by-product we obtain a negative solution to the ten-year-old problem whether the Giuli–Hušek Diagonal Theorem holds true in every decent category, and exhibit a counter-example in the category of topological spaces over the 1-sphere.1998info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/7758http://hdl.handle.net/10316/7758https://doi.org/10.1023/A:1008636615842engApplied Categorical Structures. 6:3 (1998) 373-401Clementino, Maria ManuelTholen, Walterinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2020-01-21T10:18:22Zoai:estudogeral.uc.pt:10316/7758Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:00:43.959302Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Separated and Connected Maps |
title |
Separated and Connected Maps |
spellingShingle |
Separated and Connected Maps Clementino, Maria Manuel |
title_short |
Separated and Connected Maps |
title_full |
Separated and Connected Maps |
title_fullStr |
Separated and Connected Maps |
title_full_unstemmed |
Separated and Connected Maps |
title_sort |
Separated and Connected Maps |
author |
Clementino, Maria Manuel |
author_facet |
Clementino, Maria Manuel Tholen, Walter |
author_role |
author |
author2 |
Tholen, Walter |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Clementino, Maria Manuel Tholen, Walter |
description |
Using on the one hand closure operators in the sense of Dikranjan and Giuli and on the other hand left- and right-constant subcategories in the sense of Herrlich, Preuß, Arhangel'skii and Wiegandt, we apply two categorical concepts of connectedness and separation/disconnectedness to comma categories in order to introduce these notions for morphisms of a category and to study their factorization behaviour. While at the object level in categories with enough points the first approach exceeds the second considerably, as far as generality is concerned, the two approaches become quite distinct at the morphism level. In fact, left- and right-constant subcategories lead to a straight generalization of Collins' concordant and dissonant maps in the category $$\mathcal{T}op$$ of topological spaces. By contrast, closure operators are neither able to describe these types of maps in $$\mathcal{T}op$$, nor the more classical monotone and light maps of Eilenberg and Whyburn, although they give all sorts of interesting and closely related types of maps. As a by-product we obtain a negative solution to the ten-year-old problem whether the Giuli–Hušek Diagonal Theorem holds true in every decent category, and exhibit a counter-example in the category of topological spaces over the 1-sphere. |
publishDate |
1998 |
dc.date.none.fl_str_mv |
1998 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10316/7758 http://hdl.handle.net/10316/7758 https://doi.org/10.1023/A:1008636615842 |
url |
http://hdl.handle.net/10316/7758 https://doi.org/10.1023/A:1008636615842 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Applied Categorical Structures. 6:3 (1998) 373-401 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133897603153920 |