Numerical modeling of cold room’s hinged door opening and closing processes

Detalhes bibliográficos
Autor(a) principal: Carneiro, R.
Data de Publicação: 2016
Outros Autores: Gaspar, Pedro Dinis, Silva, Pedro Dinho da, Domingues, Cláudia
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.6/7278
Resumo: The need of rationalize energy consumption in agrifood industry has fasten the development of methodologies to improve the thermal and energy performances of cold rooms. This paper presents a three-dimensional (3D) transient Computational Fluid Dynamics (CFD) modelling of a cold room to evaluate the air infiltration rate through hinged doors. A species transport model is used for modelling the tracer gas concentration decay technique. Numerical predictions indicate that air temperature difference between spaces affects the air infiltration. For this case study, the infiltration rate increases 0.016 m3 s-1 per K of air temperature difference. The knowledge about the evolution of air infiltration during door opening/closing times allows to draw some conclusions about its influence on the air conditions inside the cold room, as well as to suggest best practices and simple technical improvements that can minimize air infiltration, and consequently improve thermal performance and energy consumption rationalization.
id RCAP_3032f690b932640bd31214553ab29170
oai_identifier_str oai:ubibliorum.ubi.pt:10400.6/7278
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Numerical modeling of cold room’s hinged door opening and closing processesNumerical modelingCFDAir infiltrationThermal performanceCold roomHinged doorTracer gas techniqueThe need of rationalize energy consumption in agrifood industry has fasten the development of methodologies to improve the thermal and energy performances of cold rooms. This paper presents a three-dimensional (3D) transient Computational Fluid Dynamics (CFD) modelling of a cold room to evaluate the air infiltration rate through hinged doors. A species transport model is used for modelling the tracer gas concentration decay technique. Numerical predictions indicate that air temperature difference between spaces affects the air infiltration. For this case study, the infiltration rate increases 0.016 m3 s-1 per K of air temperature difference. The knowledge about the evolution of air infiltration during door opening/closing times allows to draw some conclusions about its influence on the air conditions inside the cold room, as well as to suggest best practices and simple technical improvements that can minimize air infiltration, and consequently improve thermal performance and energy consumption rationalization.uBibliorumCarneiro, R.Gaspar, Pedro DinisSilva, Pedro Dinho daDomingues, Cláudia2019-10-18T09:29:16Z20162016-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.6/7278eng0094-243Xinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-12-15T09:46:30Zoai:ubibliorum.ubi.pt:10400.6/7278Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:47:49.855293Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Numerical modeling of cold room’s hinged door opening and closing processes
title Numerical modeling of cold room’s hinged door opening and closing processes
spellingShingle Numerical modeling of cold room’s hinged door opening and closing processes
Carneiro, R.
Numerical modeling
CFD
Air infiltration
Thermal performance
Cold room
Hinged door
Tracer gas technique
title_short Numerical modeling of cold room’s hinged door opening and closing processes
title_full Numerical modeling of cold room’s hinged door opening and closing processes
title_fullStr Numerical modeling of cold room’s hinged door opening and closing processes
title_full_unstemmed Numerical modeling of cold room’s hinged door opening and closing processes
title_sort Numerical modeling of cold room’s hinged door opening and closing processes
author Carneiro, R.
author_facet Carneiro, R.
Gaspar, Pedro Dinis
Silva, Pedro Dinho da
Domingues, Cláudia
author_role author
author2 Gaspar, Pedro Dinis
Silva, Pedro Dinho da
Domingues, Cláudia
author2_role author
author
author
dc.contributor.none.fl_str_mv uBibliorum
dc.contributor.author.fl_str_mv Carneiro, R.
Gaspar, Pedro Dinis
Silva, Pedro Dinho da
Domingues, Cláudia
dc.subject.por.fl_str_mv Numerical modeling
CFD
Air infiltration
Thermal performance
Cold room
Hinged door
Tracer gas technique
topic Numerical modeling
CFD
Air infiltration
Thermal performance
Cold room
Hinged door
Tracer gas technique
description The need of rationalize energy consumption in agrifood industry has fasten the development of methodologies to improve the thermal and energy performances of cold rooms. This paper presents a three-dimensional (3D) transient Computational Fluid Dynamics (CFD) modelling of a cold room to evaluate the air infiltration rate through hinged doors. A species transport model is used for modelling the tracer gas concentration decay technique. Numerical predictions indicate that air temperature difference between spaces affects the air infiltration. For this case study, the infiltration rate increases 0.016 m3 s-1 per K of air temperature difference. The knowledge about the evolution of air infiltration during door opening/closing times allows to draw some conclusions about its influence on the air conditions inside the cold room, as well as to suggest best practices and simple technical improvements that can minimize air infiltration, and consequently improve thermal performance and energy consumption rationalization.
publishDate 2016
dc.date.none.fl_str_mv 2016
2016-01-01T00:00:00Z
2019-10-18T09:29:16Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.6/7278
url http://hdl.handle.net/10400.6/7278
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0094-243X
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136373412724736