Numerical modeling of cold room’s hinged door opening and closing processes
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.6/7278 |
Resumo: | The need of rationalize energy consumption in agrifood industry has fasten the development of methodologies to improve the thermal and energy performances of cold rooms. This paper presents a three-dimensional (3D) transient Computational Fluid Dynamics (CFD) modelling of a cold room to evaluate the air infiltration rate through hinged doors. A species transport model is used for modelling the tracer gas concentration decay technique. Numerical predictions indicate that air temperature difference between spaces affects the air infiltration. For this case study, the infiltration rate increases 0.016 m3 s-1 per K of air temperature difference. The knowledge about the evolution of air infiltration during door opening/closing times allows to draw some conclusions about its influence on the air conditions inside the cold room, as well as to suggest best practices and simple technical improvements that can minimize air infiltration, and consequently improve thermal performance and energy consumption rationalization. |
id |
RCAP_3032f690b932640bd31214553ab29170 |
---|---|
oai_identifier_str |
oai:ubibliorum.ubi.pt:10400.6/7278 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Numerical modeling of cold room’s hinged door opening and closing processesNumerical modelingCFDAir infiltrationThermal performanceCold roomHinged doorTracer gas techniqueThe need of rationalize energy consumption in agrifood industry has fasten the development of methodologies to improve the thermal and energy performances of cold rooms. This paper presents a three-dimensional (3D) transient Computational Fluid Dynamics (CFD) modelling of a cold room to evaluate the air infiltration rate through hinged doors. A species transport model is used for modelling the tracer gas concentration decay technique. Numerical predictions indicate that air temperature difference between spaces affects the air infiltration. For this case study, the infiltration rate increases 0.016 m3 s-1 per K of air temperature difference. The knowledge about the evolution of air infiltration during door opening/closing times allows to draw some conclusions about its influence on the air conditions inside the cold room, as well as to suggest best practices and simple technical improvements that can minimize air infiltration, and consequently improve thermal performance and energy consumption rationalization.uBibliorumCarneiro, R.Gaspar, Pedro DinisSilva, Pedro Dinho daDomingues, Cláudia2019-10-18T09:29:16Z20162016-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.6/7278eng0094-243Xinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-12-15T09:46:30Zoai:ubibliorum.ubi.pt:10400.6/7278Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:47:49.855293Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Numerical modeling of cold room’s hinged door opening and closing processes |
title |
Numerical modeling of cold room’s hinged door opening and closing processes |
spellingShingle |
Numerical modeling of cold room’s hinged door opening and closing processes Carneiro, R. Numerical modeling CFD Air infiltration Thermal performance Cold room Hinged door Tracer gas technique |
title_short |
Numerical modeling of cold room’s hinged door opening and closing processes |
title_full |
Numerical modeling of cold room’s hinged door opening and closing processes |
title_fullStr |
Numerical modeling of cold room’s hinged door opening and closing processes |
title_full_unstemmed |
Numerical modeling of cold room’s hinged door opening and closing processes |
title_sort |
Numerical modeling of cold room’s hinged door opening and closing processes |
author |
Carneiro, R. |
author_facet |
Carneiro, R. Gaspar, Pedro Dinis Silva, Pedro Dinho da Domingues, Cláudia |
author_role |
author |
author2 |
Gaspar, Pedro Dinis Silva, Pedro Dinho da Domingues, Cláudia |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
uBibliorum |
dc.contributor.author.fl_str_mv |
Carneiro, R. Gaspar, Pedro Dinis Silva, Pedro Dinho da Domingues, Cláudia |
dc.subject.por.fl_str_mv |
Numerical modeling CFD Air infiltration Thermal performance Cold room Hinged door Tracer gas technique |
topic |
Numerical modeling CFD Air infiltration Thermal performance Cold room Hinged door Tracer gas technique |
description |
The need of rationalize energy consumption in agrifood industry has fasten the development of methodologies to improve the thermal and energy performances of cold rooms. This paper presents a three-dimensional (3D) transient Computational Fluid Dynamics (CFD) modelling of a cold room to evaluate the air infiltration rate through hinged doors. A species transport model is used for modelling the tracer gas concentration decay technique. Numerical predictions indicate that air temperature difference between spaces affects the air infiltration. For this case study, the infiltration rate increases 0.016 m3 s-1 per K of air temperature difference. The knowledge about the evolution of air infiltration during door opening/closing times allows to draw some conclusions about its influence on the air conditions inside the cold room, as well as to suggest best practices and simple technical improvements that can minimize air infiltration, and consequently improve thermal performance and energy consumption rationalization. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016 2016-01-01T00:00:00Z 2019-10-18T09:29:16Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.6/7278 |
url |
http://hdl.handle.net/10400.6/7278 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0094-243X |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799136373412724736 |