A MAXIMUM PRINCIPLE FOR OPTIMAL CONTROL PROBLEMS WITH STATE AND MIXED CONSTRAINTS

Detalhes bibliográficos
Autor(a) principal: Ali Biswas, MHA
Data de Publicação: 2015
Outros Autores: Maria do Rosário de Pinho
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://hdl.handle.net/10216/109708
Resumo: Here we derive a variant of the nonsmooth maximum principle for optimal control problems with both pure state and mixed state and control constraints. Our necessary conditions include a Weierstrass condition together with an Euler adjoint inclusion involving the joint subdifferentials with respect to both state and control, generalizing previous results in [M.d.R. de Pinho, M.M.A. Ferreira, F.A.C.C. Fontes, Unmaximized inclusion necessary conditions for nonconvex constrained optimal control problems. ESAIM: COCV 11 (2005) 614-632]. A notable feature is that our main results are derived combining old techniques with recent results. We use a well known penalization technique for state constrained problem together with an appeal to a recent nonsmooth maximum principle for problems with mixed constraints.
id RCAP_304abf0deb8c82b502a9c93941833c1e
oai_identifier_str oai:repositorio-aberto.up.pt:10216/109708
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling A MAXIMUM PRINCIPLE FOR OPTIMAL CONTROL PROBLEMS WITH STATE AND MIXED CONSTRAINTSHere we derive a variant of the nonsmooth maximum principle for optimal control problems with both pure state and mixed state and control constraints. Our necessary conditions include a Weierstrass condition together with an Euler adjoint inclusion involving the joint subdifferentials with respect to both state and control, generalizing previous results in [M.d.R. de Pinho, M.M.A. Ferreira, F.A.C.C. Fontes, Unmaximized inclusion necessary conditions for nonconvex constrained optimal control problems. ESAIM: COCV 11 (2005) 614-632]. A notable feature is that our main results are derived combining old techniques with recent results. We use a well known penalization technique for state constrained problem together with an appeal to a recent nonsmooth maximum principle for problems with mixed constraints.20152015-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/10216/109708eng1292-811910.1051/cocv/2014047Ali Biswas, MHAMaria do Rosário de Pinhoinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-29T13:00:50Zoai:repositorio-aberto.up.pt:10216/109708Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T23:31:45.707002Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv A MAXIMUM PRINCIPLE FOR OPTIMAL CONTROL PROBLEMS WITH STATE AND MIXED CONSTRAINTS
title A MAXIMUM PRINCIPLE FOR OPTIMAL CONTROL PROBLEMS WITH STATE AND MIXED CONSTRAINTS
spellingShingle A MAXIMUM PRINCIPLE FOR OPTIMAL CONTROL PROBLEMS WITH STATE AND MIXED CONSTRAINTS
Ali Biswas, MHA
title_short A MAXIMUM PRINCIPLE FOR OPTIMAL CONTROL PROBLEMS WITH STATE AND MIXED CONSTRAINTS
title_full A MAXIMUM PRINCIPLE FOR OPTIMAL CONTROL PROBLEMS WITH STATE AND MIXED CONSTRAINTS
title_fullStr A MAXIMUM PRINCIPLE FOR OPTIMAL CONTROL PROBLEMS WITH STATE AND MIXED CONSTRAINTS
title_full_unstemmed A MAXIMUM PRINCIPLE FOR OPTIMAL CONTROL PROBLEMS WITH STATE AND MIXED CONSTRAINTS
title_sort A MAXIMUM PRINCIPLE FOR OPTIMAL CONTROL PROBLEMS WITH STATE AND MIXED CONSTRAINTS
author Ali Biswas, MHA
author_facet Ali Biswas, MHA
Maria do Rosário de Pinho
author_role author
author2 Maria do Rosário de Pinho
author2_role author
dc.contributor.author.fl_str_mv Ali Biswas, MHA
Maria do Rosário de Pinho
description Here we derive a variant of the nonsmooth maximum principle for optimal control problems with both pure state and mixed state and control constraints. Our necessary conditions include a Weierstrass condition together with an Euler adjoint inclusion involving the joint subdifferentials with respect to both state and control, generalizing previous results in [M.d.R. de Pinho, M.M.A. Ferreira, F.A.C.C. Fontes, Unmaximized inclusion necessary conditions for nonconvex constrained optimal control problems. ESAIM: COCV 11 (2005) 614-632]. A notable feature is that our main results are derived combining old techniques with recent results. We use a well known penalization technique for state constrained problem together with an appeal to a recent nonsmooth maximum principle for problems with mixed constraints.
publishDate 2015
dc.date.none.fl_str_mv 2015
2015-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10216/109708
url https://hdl.handle.net/10216/109708
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1292-8119
10.1051/cocv/2014047
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799135627762991105