Comparative study of microglia activation induced by amyloid-beta and prion peptides: Role in neurodegeneration
Autor(a) principal: | |
---|---|
Data de Publicação: | 2006 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10316/8412 https://doi.org/10.1002/jnr.20870 |
Resumo: | The inflammatory responses in Alzheimer's disease (AD) and prion-related encephalopathies (PRE) are dominated by microglia activation. Several studies have reported that the amyloid-beta (Abeta) peptides, which are associated with AD, and the pathogenic isoform of prion protein (PrPSc) have a crucial role in neuronal death and gliosis that occur in both of these disorders. In this study, we investigate whether Abeta and PrPSc cause microglia activation per se and whether these amyloidogenic peptides differentially affect these immunoeffector cells. In addition, we also determined whether substances released by Abeta- and PrP-activated microglia induce neuronal death. Cultures of rat brain microglia cells were treated with the synthetic peptides Abeta1-40, Abeta1-42 and PrP106-126 for different time periods. The lipopolysaccharide was used as a positive control of microglia activation. Our results show that Abeta1-40 and PrP106-126 caused similar morphological changes in microglia and increased the production of nitric oxide and hydroperoxides. An increase on inducible nitric oxide synthase expression was also observed in microglia treated with Abeta1-40 or PrP106. However, these peptides affected in a different manner the secretion of interleukin-1beta (IL-1beta) and interleukin-6 (IL-6) secretion. In cocultures of microglia-neurons, it was observed that microglia treated with Abeta1-40 or PrP106-126 induced a comparable extent of neuronal death. The neutralizing antibody for IL-6 significantly reduced the neuronal death induced by Abeta- or PrP-activated microglia. Taken together, the data indicate that Abeta and PrP peptides caused microglia activation and differentially affected cytokine secretion. The IL-6 released by reactive microglia caused neuronal injury. © 2006 Wiley-Liss, Inc. |
id |
RCAP_306f5e743d892bcfc4c1bb6368845bef |
---|---|
oai_identifier_str |
oai:estudogeral.uc.pt:10316/8412 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Comparative study of microglia activation induced by amyloid-beta and prion peptides: Role in neurodegenerationThe inflammatory responses in Alzheimer's disease (AD) and prion-related encephalopathies (PRE) are dominated by microglia activation. Several studies have reported that the amyloid-beta (Abeta) peptides, which are associated with AD, and the pathogenic isoform of prion protein (PrPSc) have a crucial role in neuronal death and gliosis that occur in both of these disorders. In this study, we investigate whether Abeta and PrPSc cause microglia activation per se and whether these amyloidogenic peptides differentially affect these immunoeffector cells. In addition, we also determined whether substances released by Abeta- and PrP-activated microglia induce neuronal death. Cultures of rat brain microglia cells were treated with the synthetic peptides Abeta1-40, Abeta1-42 and PrP106-126 for different time periods. The lipopolysaccharide was used as a positive control of microglia activation. Our results show that Abeta1-40 and PrP106-126 caused similar morphological changes in microglia and increased the production of nitric oxide and hydroperoxides. An increase on inducible nitric oxide synthase expression was also observed in microglia treated with Abeta1-40 or PrP106. However, these peptides affected in a different manner the secretion of interleukin-1beta (IL-1beta) and interleukin-6 (IL-6) secretion. In cocultures of microglia-neurons, it was observed that microglia treated with Abeta1-40 or PrP106-126 induced a comparable extent of neuronal death. The neutralizing antibody for IL-6 significantly reduced the neuronal death induced by Abeta- or PrP-activated microglia. Taken together, the data indicate that Abeta and PrP peptides caused microglia activation and differentially affected cytokine secretion. The IL-6 released by reactive microglia caused neuronal injury. © 2006 Wiley-Liss, Inc.2006info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/8412http://hdl.handle.net/10316/8412https://doi.org/10.1002/jnr.20870engJournal of Neuroscience Research. 84:1 (2006) 182-193Garção, PedroOliveira, Catarina R.Agostinho, Paulainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2020-05-27T16:14:32Zoai:estudogeral.uc.pt:10316/8412Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:43:31.994120Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Comparative study of microglia activation induced by amyloid-beta and prion peptides: Role in neurodegeneration |
title |
Comparative study of microglia activation induced by amyloid-beta and prion peptides: Role in neurodegeneration |
spellingShingle |
Comparative study of microglia activation induced by amyloid-beta and prion peptides: Role in neurodegeneration Garção, Pedro |
title_short |
Comparative study of microglia activation induced by amyloid-beta and prion peptides: Role in neurodegeneration |
title_full |
Comparative study of microglia activation induced by amyloid-beta and prion peptides: Role in neurodegeneration |
title_fullStr |
Comparative study of microglia activation induced by amyloid-beta and prion peptides: Role in neurodegeneration |
title_full_unstemmed |
Comparative study of microglia activation induced by amyloid-beta and prion peptides: Role in neurodegeneration |
title_sort |
Comparative study of microglia activation induced by amyloid-beta and prion peptides: Role in neurodegeneration |
author |
Garção, Pedro |
author_facet |
Garção, Pedro Oliveira, Catarina R. Agostinho, Paula |
author_role |
author |
author2 |
Oliveira, Catarina R. Agostinho, Paula |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Garção, Pedro Oliveira, Catarina R. Agostinho, Paula |
description |
The inflammatory responses in Alzheimer's disease (AD) and prion-related encephalopathies (PRE) are dominated by microglia activation. Several studies have reported that the amyloid-beta (Abeta) peptides, which are associated with AD, and the pathogenic isoform of prion protein (PrPSc) have a crucial role in neuronal death and gliosis that occur in both of these disorders. In this study, we investigate whether Abeta and PrPSc cause microglia activation per se and whether these amyloidogenic peptides differentially affect these immunoeffector cells. In addition, we also determined whether substances released by Abeta- and PrP-activated microglia induce neuronal death. Cultures of rat brain microglia cells were treated with the synthetic peptides Abeta1-40, Abeta1-42 and PrP106-126 for different time periods. The lipopolysaccharide was used as a positive control of microglia activation. Our results show that Abeta1-40 and PrP106-126 caused similar morphological changes in microglia and increased the production of nitric oxide and hydroperoxides. An increase on inducible nitric oxide synthase expression was also observed in microglia treated with Abeta1-40 or PrP106. However, these peptides affected in a different manner the secretion of interleukin-1beta (IL-1beta) and interleukin-6 (IL-6) secretion. In cocultures of microglia-neurons, it was observed that microglia treated with Abeta1-40 or PrP106-126 induced a comparable extent of neuronal death. The neutralizing antibody for IL-6 significantly reduced the neuronal death induced by Abeta- or PrP-activated microglia. Taken together, the data indicate that Abeta and PrP peptides caused microglia activation and differentially affected cytokine secretion. The IL-6 released by reactive microglia caused neuronal injury. © 2006 Wiley-Liss, Inc. |
publishDate |
2006 |
dc.date.none.fl_str_mv |
2006 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10316/8412 http://hdl.handle.net/10316/8412 https://doi.org/10.1002/jnr.20870 |
url |
http://hdl.handle.net/10316/8412 https://doi.org/10.1002/jnr.20870 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Journal of Neuroscience Research. 84:1 (2006) 182-193 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133707279269888 |