Probabilistic Egomotion for Stereo Visual Odometry
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.22/7270 |
Resumo: | We present a novel approach of Stereo Visual Odometry for vehicles equipped with calibrated stereo cameras. We combine a dense probabilistic 5D egomotion estimation method with a sparse keypoint based stereo approach to provide high quality estimates of vehicle’s angular and linear velocities. To validate our approach, we perform two sets of experiments with a well known benchmarking dataset. First, we assess the quality of the raw velocity estimates in comparison to classical pose estimation algorithms. Second, we added to our method’s instantaneous velocity estimates a Kalman Filter and compare its performance with a well known open source stereo Visual Odometry library. The presented results compare favorably with state-of-the-art approaches, mainly in the estimation of the angular velocities, where significant improvements are achieved. |
id |
RCAP_31650fa81aabea72b41fc5e1ab80ef5b |
---|---|
oai_identifier_str |
oai:recipp.ipp.pt:10400.22/7270 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Probabilistic Egomotion for Stereo Visual OdometryStereo visionVisual OdometryEgomotionVisual NavigationWe present a novel approach of Stereo Visual Odometry for vehicles equipped with calibrated stereo cameras. We combine a dense probabilistic 5D egomotion estimation method with a sparse keypoint based stereo approach to provide high quality estimates of vehicle’s angular and linear velocities. To validate our approach, we perform two sets of experiments with a well known benchmarking dataset. First, we assess the quality of the raw velocity estimates in comparison to classical pose estimation algorithms. Second, we added to our method’s instantaneous velocity estimates a Kalman Filter and compare its performance with a well known open source stereo Visual Odometry library. The presented results compare favorably with state-of-the-art approaches, mainly in the estimation of the angular velocities, where significant improvements are achieved.SpringerRepositório Científico do Instituto Politécnico do PortoSilva, HugoBernardino, A.Silva, Eduardo2015-12-28T15:49:38Z20152015-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.22/7270eng1573-040910.1007/s10846-014-0054-5info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-13T12:47:30Zoai:recipp.ipp.pt:10400.22/7270Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:27:37.772238Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Probabilistic Egomotion for Stereo Visual Odometry |
title |
Probabilistic Egomotion for Stereo Visual Odometry |
spellingShingle |
Probabilistic Egomotion for Stereo Visual Odometry Silva, Hugo Stereo vision Visual Odometry Egomotion Visual Navigation |
title_short |
Probabilistic Egomotion for Stereo Visual Odometry |
title_full |
Probabilistic Egomotion for Stereo Visual Odometry |
title_fullStr |
Probabilistic Egomotion for Stereo Visual Odometry |
title_full_unstemmed |
Probabilistic Egomotion for Stereo Visual Odometry |
title_sort |
Probabilistic Egomotion for Stereo Visual Odometry |
author |
Silva, Hugo |
author_facet |
Silva, Hugo Bernardino, A. Silva, Eduardo |
author_role |
author |
author2 |
Bernardino, A. Silva, Eduardo |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Repositório Científico do Instituto Politécnico do Porto |
dc.contributor.author.fl_str_mv |
Silva, Hugo Bernardino, A. Silva, Eduardo |
dc.subject.por.fl_str_mv |
Stereo vision Visual Odometry Egomotion Visual Navigation |
topic |
Stereo vision Visual Odometry Egomotion Visual Navigation |
description |
We present a novel approach of Stereo Visual Odometry for vehicles equipped with calibrated stereo cameras. We combine a dense probabilistic 5D egomotion estimation method with a sparse keypoint based stereo approach to provide high quality estimates of vehicle’s angular and linear velocities. To validate our approach, we perform two sets of experiments with a well known benchmarking dataset. First, we assess the quality of the raw velocity estimates in comparison to classical pose estimation algorithms. Second, we added to our method’s instantaneous velocity estimates a Kalman Filter and compare its performance with a well known open source stereo Visual Odometry library. The presented results compare favorably with state-of-the-art approaches, mainly in the estimation of the angular velocities, where significant improvements are achieved. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-12-28T15:49:38Z 2015 2015-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.22/7270 |
url |
http://hdl.handle.net/10400.22/7270 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1573-0409 10.1007/s10846-014-0054-5 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799131371560501248 |