Probabilistic Egomotion for Stereo Visual Odometry

Detalhes bibliográficos
Autor(a) principal: Silva, Hugo
Data de Publicação: 2015
Outros Autores: Bernardino, A., Silva, Eduardo
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.22/7270
Resumo: We present a novel approach of Stereo Visual Odometry for vehicles equipped with calibrated stereo cameras. We combine a dense probabilistic 5D egomotion estimation method with a sparse keypoint based stereo approach to provide high quality estimates of vehicle’s angular and linear velocities. To validate our approach, we perform two sets of experiments with a well known benchmarking dataset. First, we assess the quality of the raw velocity estimates in comparison to classical pose estimation algorithms. Second, we added to our method’s instantaneous velocity estimates a Kalman Filter and compare its performance with a well known open source stereo Visual Odometry library. The presented results compare favorably with state-of-the-art approaches, mainly in the estimation of the angular velocities, where significant improvements are achieved.
id RCAP_31650fa81aabea72b41fc5e1ab80ef5b
oai_identifier_str oai:recipp.ipp.pt:10400.22/7270
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Probabilistic Egomotion for Stereo Visual OdometryStereo visionVisual OdometryEgomotionVisual NavigationWe present a novel approach of Stereo Visual Odometry for vehicles equipped with calibrated stereo cameras. We combine a dense probabilistic 5D egomotion estimation method with a sparse keypoint based stereo approach to provide high quality estimates of vehicle’s angular and linear velocities. To validate our approach, we perform two sets of experiments with a well known benchmarking dataset. First, we assess the quality of the raw velocity estimates in comparison to classical pose estimation algorithms. Second, we added to our method’s instantaneous velocity estimates a Kalman Filter and compare its performance with a well known open source stereo Visual Odometry library. The presented results compare favorably with state-of-the-art approaches, mainly in the estimation of the angular velocities, where significant improvements are achieved.SpringerRepositório Científico do Instituto Politécnico do PortoSilva, HugoBernardino, A.Silva, Eduardo2015-12-28T15:49:38Z20152015-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.22/7270eng1573-040910.1007/s10846-014-0054-5info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-13T12:47:30Zoai:recipp.ipp.pt:10400.22/7270Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:27:37.772238Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Probabilistic Egomotion for Stereo Visual Odometry
title Probabilistic Egomotion for Stereo Visual Odometry
spellingShingle Probabilistic Egomotion for Stereo Visual Odometry
Silva, Hugo
Stereo vision
Visual Odometry
Egomotion
Visual Navigation
title_short Probabilistic Egomotion for Stereo Visual Odometry
title_full Probabilistic Egomotion for Stereo Visual Odometry
title_fullStr Probabilistic Egomotion for Stereo Visual Odometry
title_full_unstemmed Probabilistic Egomotion for Stereo Visual Odometry
title_sort Probabilistic Egomotion for Stereo Visual Odometry
author Silva, Hugo
author_facet Silva, Hugo
Bernardino, A.
Silva, Eduardo
author_role author
author2 Bernardino, A.
Silva, Eduardo
author2_role author
author
dc.contributor.none.fl_str_mv Repositório Científico do Instituto Politécnico do Porto
dc.contributor.author.fl_str_mv Silva, Hugo
Bernardino, A.
Silva, Eduardo
dc.subject.por.fl_str_mv Stereo vision
Visual Odometry
Egomotion
Visual Navigation
topic Stereo vision
Visual Odometry
Egomotion
Visual Navigation
description We present a novel approach of Stereo Visual Odometry for vehicles equipped with calibrated stereo cameras. We combine a dense probabilistic 5D egomotion estimation method with a sparse keypoint based stereo approach to provide high quality estimates of vehicle’s angular and linear velocities. To validate our approach, we perform two sets of experiments with a well known benchmarking dataset. First, we assess the quality of the raw velocity estimates in comparison to classical pose estimation algorithms. Second, we added to our method’s instantaneous velocity estimates a Kalman Filter and compare its performance with a well known open source stereo Visual Odometry library. The presented results compare favorably with state-of-the-art approaches, mainly in the estimation of the angular velocities, where significant improvements are achieved.
publishDate 2015
dc.date.none.fl_str_mv 2015-12-28T15:49:38Z
2015
2015-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.22/7270
url http://hdl.handle.net/10400.22/7270
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1573-0409
10.1007/s10846-014-0054-5
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799131371560501248