Probabilistic Egomotion for Stereo Visual Odometry

Detalhes bibliográficos
Autor(a) principal: Hugo Miguel Silva
Data de Publicação: 2015
Outros Autores: Bernardino,A, Eduardo Silva
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://repositorio.inesctec.pt/handle/123456789/5882
http://dx.doi.org/10.1007/s10846-014-0054-5
Resumo: We present a novel approach of Stereo Visual Odometry for vehicles equipped with calibrated stereo cameras. We combine a dense probabilistic 5D egomotion estimation method with a sparse keypoint based stereo approach to provide high quality estimates of vehicle's angular and linear velocities. To validate our approach, we perform two sets of experiments with a well known benchmarking dataset. First, we assess the quality of the raw velocity estimates in comparison to classical pose estimation algorithms. Second, we added to our method's instantaneous velocity estimates a Kalman Filter and compare its performance with a well known open source stereo Visual Odometry library. The presented results compare favorably with state-of-the-art approaches, mainly in the estimation of the angular velocities, where significant improvements are achieved.
id RCAP_9dd4377e88fb1cae5da9aa5d8c1d1ea9
oai_identifier_str oai:repositorio.inesctec.pt:123456789/5882
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Probabilistic Egomotion for Stereo Visual OdometryWe present a novel approach of Stereo Visual Odometry for vehicles equipped with calibrated stereo cameras. We combine a dense probabilistic 5D egomotion estimation method with a sparse keypoint based stereo approach to provide high quality estimates of vehicle's angular and linear velocities. To validate our approach, we perform two sets of experiments with a well known benchmarking dataset. First, we assess the quality of the raw velocity estimates in comparison to classical pose estimation algorithms. Second, we added to our method's instantaneous velocity estimates a Kalman Filter and compare its performance with a well known open source stereo Visual Odometry library. The presented results compare favorably with state-of-the-art approaches, mainly in the estimation of the angular velocities, where significant improvements are achieved.2018-01-10T15:27:01Z2015-01-01T00:00:00Z2015info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://repositorio.inesctec.pt/handle/123456789/5882http://dx.doi.org/10.1007/s10846-014-0054-5engHugo Miguel SilvaBernardino,AEduardo Silvainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-05-15T10:20:51Zoai:repositorio.inesctec.pt:123456789/5882Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:53:43.566486Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Probabilistic Egomotion for Stereo Visual Odometry
title Probabilistic Egomotion for Stereo Visual Odometry
spellingShingle Probabilistic Egomotion for Stereo Visual Odometry
Hugo Miguel Silva
title_short Probabilistic Egomotion for Stereo Visual Odometry
title_full Probabilistic Egomotion for Stereo Visual Odometry
title_fullStr Probabilistic Egomotion for Stereo Visual Odometry
title_full_unstemmed Probabilistic Egomotion for Stereo Visual Odometry
title_sort Probabilistic Egomotion for Stereo Visual Odometry
author Hugo Miguel Silva
author_facet Hugo Miguel Silva
Bernardino,A
Eduardo Silva
author_role author
author2 Bernardino,A
Eduardo Silva
author2_role author
author
dc.contributor.author.fl_str_mv Hugo Miguel Silva
Bernardino,A
Eduardo Silva
description We present a novel approach of Stereo Visual Odometry for vehicles equipped with calibrated stereo cameras. We combine a dense probabilistic 5D egomotion estimation method with a sparse keypoint based stereo approach to provide high quality estimates of vehicle's angular and linear velocities. To validate our approach, we perform two sets of experiments with a well known benchmarking dataset. First, we assess the quality of the raw velocity estimates in comparison to classical pose estimation algorithms. Second, we added to our method's instantaneous velocity estimates a Kalman Filter and compare its performance with a well known open source stereo Visual Odometry library. The presented results compare favorably with state-of-the-art approaches, mainly in the estimation of the angular velocities, where significant improvements are achieved.
publishDate 2015
dc.date.none.fl_str_mv 2015-01-01T00:00:00Z
2015
2018-01-10T15:27:01Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.inesctec.pt/handle/123456789/5882
http://dx.doi.org/10.1007/s10846-014-0054-5
url http://repositorio.inesctec.pt/handle/123456789/5882
http://dx.doi.org/10.1007/s10846-014-0054-5
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799131611168505856