Clique communities in social networks

Detalhes bibliográficos
Autor(a) principal: Cavique, Luís
Data de Publicação: 2011
Outros Autores: Mendes, Armando B., Santos, Jorge M. A.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.2/1852
Resumo: Given the large amount of data provided by the Web 2.0, there is a pressing need to obtain new metrics to better understand the network structure; how their communities are organized and the way they evolve over time. Complex network and graph mining metrics are essentially based on low complexity computational procedures like the diameter of the graph, clustering coefficient and the degree distribution of the nodes. The connected communities in the social networks have, essentially, been studied in two contexts: global metrics like the clustering coefficient and the node groups, such as the graph partitions and clique communities.
id RCAP_3224106022b6a9091da7fa9ef2e02b87
oai_identifier_str oai:repositorioaberto.uab.pt:10400.2/1852
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Clique communities in social networksSocial networksClique communitiesGiven the large amount of data provided by the Web 2.0, there is a pressing need to obtain new metrics to better understand the network structure; how their communities are organized and the way they evolve over time. Complex network and graph mining metrics are essentially based on low complexity computational procedures like the diameter of the graph, clustering coefficient and the degree distribution of the nodes. The connected communities in the social networks have, essentially, been studied in two contexts: global metrics like the clustering coefficient and the node groups, such as the graph partitions and clique communities.Repositório AbertoCavique, LuísMendes, Armando B.Santos, Jorge M. A.2011-09-07T13:16:51Z20112011-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.2/1852enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-16T15:14:53Zoai:repositorioaberto.uab.pt:10400.2/1852Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:43:31.628488Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Clique communities in social networks
title Clique communities in social networks
spellingShingle Clique communities in social networks
Cavique, Luís
Social networks
Clique communities
title_short Clique communities in social networks
title_full Clique communities in social networks
title_fullStr Clique communities in social networks
title_full_unstemmed Clique communities in social networks
title_sort Clique communities in social networks
author Cavique, Luís
author_facet Cavique, Luís
Mendes, Armando B.
Santos, Jorge M. A.
author_role author
author2 Mendes, Armando B.
Santos, Jorge M. A.
author2_role author
author
dc.contributor.none.fl_str_mv Repositório Aberto
dc.contributor.author.fl_str_mv Cavique, Luís
Mendes, Armando B.
Santos, Jorge M. A.
dc.subject.por.fl_str_mv Social networks
Clique communities
topic Social networks
Clique communities
description Given the large amount of data provided by the Web 2.0, there is a pressing need to obtain new metrics to better understand the network structure; how their communities are organized and the way they evolve over time. Complex network and graph mining metrics are essentially based on low complexity computational procedures like the diameter of the graph, clustering coefficient and the degree distribution of the nodes. The connected communities in the social networks have, essentially, been studied in two contexts: global metrics like the clustering coefficient and the node groups, such as the graph partitions and clique communities.
publishDate 2011
dc.date.none.fl_str_mv 2011-09-07T13:16:51Z
2011
2011-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.2/1852
url http://hdl.handle.net/10400.2/1852
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799135002596737024