Neural network approach for question generation using the Revised Bloom's Taxonomy

Detalhes bibliográficos
Autor(a) principal: Correia, Gonçalo Fernando Ferreira da Costa Durão
Data de Publicação: 2020
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10071/22050
Resumo: Questioning is a fundamental part of the learning process. As new content arises and learning it becomes vital to the modern society, question generation becomes a necessary job that requires time and resources to be performed effectively. In this document, we propose a Seq2Seq approach that generates a variety of questions that are relevant to the contexts where they are asked. In order to ensure that the generated questions are diverse, relevant, and valuable to learning situations and environments, we use the Revised Bloom’s Taxonomy (RBT), a learning taxonomy that is oriented to learning objectives and can be used to separate questions based on their required cognitive level. However, neural network models require large collections of data to be trained, and datasets addressing RBT are small and scarce. To address this gap, we designed a question classifier that can be used to label current and future datasets using the guidelines provided by RBT. We employed this classifier to create a labeled dataset, which was then used as training data for our proposed Seq2Seq model. In addition, to cover the different taxonomy levels, we create six different fine-tuned models aimed specifically to each one of RBT cognitive levels. Results show that our approach is promising, guaranteeing a variety of questions for all levels of the taxonomy, surpassing the baseline when measured by BLEU-1, and deemed overall well-written, relevant and understandable, by human evaluators.
id RCAP_32b6ee70404ebc2cd218e03eb98c5819
oai_identifier_str oai:repositorio.iscte-iul.pt:10071/22050
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Neural network approach for question generation using the Revised Bloom's TaxonomyQuestion generationRevised Bloom’s TaxonomyQuestion classificationGeração de questõesTaxonomia de Bloom RevistaClassificação de questõesQuestioning is a fundamental part of the learning process. As new content arises and learning it becomes vital to the modern society, question generation becomes a necessary job that requires time and resources to be performed effectively. In this document, we propose a Seq2Seq approach that generates a variety of questions that are relevant to the contexts where they are asked. In order to ensure that the generated questions are diverse, relevant, and valuable to learning situations and environments, we use the Revised Bloom’s Taxonomy (RBT), a learning taxonomy that is oriented to learning objectives and can be used to separate questions based on their required cognitive level. However, neural network models require large collections of data to be trained, and datasets addressing RBT are small and scarce. To address this gap, we designed a question classifier that can be used to label current and future datasets using the guidelines provided by RBT. We employed this classifier to create a labeled dataset, which was then used as training data for our proposed Seq2Seq model. In addition, to cover the different taxonomy levels, we create six different fine-tuned models aimed specifically to each one of RBT cognitive levels. Results show that our approach is promising, guaranteeing a variety of questions for all levels of the taxonomy, surpassing the baseline when measured by BLEU-1, and deemed overall well-written, relevant and understandable, by human evaluators.Questionar é uma parte fundamental do processo de aprendizagem. À medida que novos conteúdos surgem e se torna vital a sua compreensão para a sociedade moderna, a geração de questões torna-se uma necessidade que, quando feita manualmente, requer tempo e recursos para ser eficaz. Neste documento introduzimos uma abordagem Sequence-To-Sequence (Seq2Seq) que consiste na geração de uma variedade de questões relevantes para os contextos nas quais são colocadas. De forma a garantir que as questões geradas são diversas, relevantes e de valor acrescentado para situações de aprendizagem, utilizámos a Taxonomia de Bloom Revista (TBR), uma taxomia de aprendizagem que é orientada aos objetivos da aprendizagem e pode ser utilizada para separar questões com base no seu nível cognitivo. Contudo, os modelos de redes neuronais precisam de grandes conjuntos de dados para o seu treino e os datasets atuais orientados à TBR são pequenos e escassos. Para colmatar esta falha, desenhámos um classificador de questões a ser usado para categorizar atuais e futuros datasets tendo em conta as orientações da taxonomia. Utilizámos este classificador para criar um dataset posteriormente utilizado para treinar o modelo Seq2Seq proposto. Adicionalmente, para cobrir os diferentes níveis da taxonomia, criámos seis modelos fine-tuned específicamente para cada um dos níveis cognitivos da TBR. Os resultados mostram que a nossa abordagem é promissora, garantindo variedade de questões para todos os níveis da taxonomia, ultrapassado a baseline quando avaliada usando BLEU-1, e considerada por avaliadores humanos, de forma geral, como uma abordagem que produz questões bem escritas, relevantes e compreensíveis.2021-12-11T00:00:00Z2020-12-11T00:00:00Z2020-12-112020-11info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10071/22050TID:202627292engCorreia, Gonçalo Fernando Ferreira da Costa Durãoinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-09T17:33:21Zoai:repositorio.iscte-iul.pt:10071/22050Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:15:01.895177Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Neural network approach for question generation using the Revised Bloom's Taxonomy
title Neural network approach for question generation using the Revised Bloom's Taxonomy
spellingShingle Neural network approach for question generation using the Revised Bloom's Taxonomy
Correia, Gonçalo Fernando Ferreira da Costa Durão
Question generation
Revised Bloom’s Taxonomy
Question classification
Geração de questões
Taxonomia de Bloom Revista
Classificação de questões
title_short Neural network approach for question generation using the Revised Bloom's Taxonomy
title_full Neural network approach for question generation using the Revised Bloom's Taxonomy
title_fullStr Neural network approach for question generation using the Revised Bloom's Taxonomy
title_full_unstemmed Neural network approach for question generation using the Revised Bloom's Taxonomy
title_sort Neural network approach for question generation using the Revised Bloom's Taxonomy
author Correia, Gonçalo Fernando Ferreira da Costa Durão
author_facet Correia, Gonçalo Fernando Ferreira da Costa Durão
author_role author
dc.contributor.author.fl_str_mv Correia, Gonçalo Fernando Ferreira da Costa Durão
dc.subject.por.fl_str_mv Question generation
Revised Bloom’s Taxonomy
Question classification
Geração de questões
Taxonomia de Bloom Revista
Classificação de questões
topic Question generation
Revised Bloom’s Taxonomy
Question classification
Geração de questões
Taxonomia de Bloom Revista
Classificação de questões
description Questioning is a fundamental part of the learning process. As new content arises and learning it becomes vital to the modern society, question generation becomes a necessary job that requires time and resources to be performed effectively. In this document, we propose a Seq2Seq approach that generates a variety of questions that are relevant to the contexts where they are asked. In order to ensure that the generated questions are diverse, relevant, and valuable to learning situations and environments, we use the Revised Bloom’s Taxonomy (RBT), a learning taxonomy that is oriented to learning objectives and can be used to separate questions based on their required cognitive level. However, neural network models require large collections of data to be trained, and datasets addressing RBT are small and scarce. To address this gap, we designed a question classifier that can be used to label current and future datasets using the guidelines provided by RBT. We employed this classifier to create a labeled dataset, which was then used as training data for our proposed Seq2Seq model. In addition, to cover the different taxonomy levels, we create six different fine-tuned models aimed specifically to each one of RBT cognitive levels. Results show that our approach is promising, guaranteeing a variety of questions for all levels of the taxonomy, surpassing the baseline when measured by BLEU-1, and deemed overall well-written, relevant and understandable, by human evaluators.
publishDate 2020
dc.date.none.fl_str_mv 2020-12-11T00:00:00Z
2020-12-11
2020-11
2021-12-11T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10071/22050
TID:202627292
url http://hdl.handle.net/10071/22050
identifier_str_mv TID:202627292
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799134707160449024