Conversational Interactive Recommendation

Detalhes bibliográficos
Autor(a) principal: Correia, Alexandre Teixeira Lobato
Data de Publicação: 2022
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/151149
Resumo: When we search for something online, sometimes we know what we want, but we do not know how to exactly describe it. To address this challenge, this thesis presents a framework based on reinforcement learning, which improves conversational assistants in order to get closer to the user’s desired product by asking a sequence of clarifying questions and giving recommendations. These clarifying questions are chosen before each interaction, in real-time, and are capable of narrowing down the search space, helping the user finding what he wants. In order for the assistant to decide which clarifying question to use, its neural network needs some information about the recommendation conversation. After the selection of the question, the assistant generates the question using a template, which might need some recommended products. Having generated the question, the assistant presents it to the user and gets his answer, from which extracts some information to update the recommendation conversation history. This framework can be served as a module inside projects and lets the recommendation conversation to evolve in various directions: minimizing the number of interactions, minimizing the repetitiveness of used questions and minimizing the repetitiveness of used questions according to their feedback times.
id RCAP_334cab9f7d7dbe31630a4caf0415701e
oai_identifier_str oai:run.unl.pt:10362/151149
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Conversational Interactive RecommendationConversational AssistantConversational AgentTask-Oriented Conversational AgentRisk-aware Conversational AgentReinforcement LearningDeep Reinforcement LearningDomínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e InformáticaWhen we search for something online, sometimes we know what we want, but we do not know how to exactly describe it. To address this challenge, this thesis presents a framework based on reinforcement learning, which improves conversational assistants in order to get closer to the user’s desired product by asking a sequence of clarifying questions and giving recommendations. These clarifying questions are chosen before each interaction, in real-time, and are capable of narrowing down the search space, helping the user finding what he wants. In order for the assistant to decide which clarifying question to use, its neural network needs some information about the recommendation conversation. After the selection of the question, the assistant generates the question using a template, which might need some recommended products. Having generated the question, the assistant presents it to the user and gets his answer, from which extracts some information to update the recommendation conversation history. This framework can be served as a module inside projects and lets the recommendation conversation to evolve in various directions: minimizing the number of interactions, minimizing the repetitiveness of used questions and minimizing the repetitiveness of used questions according to their feedback times.Quando pesquisamos algo online, às vezes sabemos o que queremos, mas não sabe- mos como descrevê-lo exatamente. Para enfrentar este desafio, esta tese introduz uma framework baseada em aprendizagem por reforço, que melhora os assistentes de conversa- ção para se aproximarem do produto desejado pelo utilizador, através de uma sequência de perguntas esclarecedoras e dando recomendações. Estas perguntas esclarecedoras são escolhidas antes de cada interação, em tempo real, e são capazes de diminuir o espaço de procura, ajudando o utilizador a encontrar o que deseja. Para que o assistente decida qual pergunta esclarecedora usar, a sua rede neural precisa de algumas informações sobre a conversa de recomendação. Após a seleção da pergunta, o assistente gera a pergunta usando um template, que pode precisar de alguns produtos para recomendar. Gerada a pergunta, o assistente apresenta-a ao utilizador e obtém a resposta, da qual extrai algumas informações para atualizar o histórico da conversa de recomendação. Esta framework pode ser usada como um módulo em projetos e permite que a con- versa de recomendação evolua de várias formas: minimizando o número de interações, minimizando a repetitividade das perguntas usadas e minimizando a repetitividade das perguntas usadas de acordo com os tempos de feedback.Magalhães, JoãoSemedo, DavidRUNCorreia, Alexandre Teixeira Lobato2023-03-24T11:08:17Z2022-112022-11-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/151149enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-22T18:10:31Zoai:run.unl.pt:10362/151149Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-22T18:10:31Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Conversational Interactive Recommendation
title Conversational Interactive Recommendation
spellingShingle Conversational Interactive Recommendation
Correia, Alexandre Teixeira Lobato
Conversational Assistant
Conversational Agent
Task-Oriented Conversational Agent
Risk-aware Conversational Agent
Reinforcement Learning
Deep Reinforcement Learning
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
title_short Conversational Interactive Recommendation
title_full Conversational Interactive Recommendation
title_fullStr Conversational Interactive Recommendation
title_full_unstemmed Conversational Interactive Recommendation
title_sort Conversational Interactive Recommendation
author Correia, Alexandre Teixeira Lobato
author_facet Correia, Alexandre Teixeira Lobato
author_role author
dc.contributor.none.fl_str_mv Magalhães, João
Semedo, David
RUN
dc.contributor.author.fl_str_mv Correia, Alexandre Teixeira Lobato
dc.subject.por.fl_str_mv Conversational Assistant
Conversational Agent
Task-Oriented Conversational Agent
Risk-aware Conversational Agent
Reinforcement Learning
Deep Reinforcement Learning
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
topic Conversational Assistant
Conversational Agent
Task-Oriented Conversational Agent
Risk-aware Conversational Agent
Reinforcement Learning
Deep Reinforcement Learning
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
description When we search for something online, sometimes we know what we want, but we do not know how to exactly describe it. To address this challenge, this thesis presents a framework based on reinforcement learning, which improves conversational assistants in order to get closer to the user’s desired product by asking a sequence of clarifying questions and giving recommendations. These clarifying questions are chosen before each interaction, in real-time, and are capable of narrowing down the search space, helping the user finding what he wants. In order for the assistant to decide which clarifying question to use, its neural network needs some information about the recommendation conversation. After the selection of the question, the assistant generates the question using a template, which might need some recommended products. Having generated the question, the assistant presents it to the user and gets his answer, from which extracts some information to update the recommendation conversation history. This framework can be served as a module inside projects and lets the recommendation conversation to evolve in various directions: minimizing the number of interactions, minimizing the repetitiveness of used questions and minimizing the repetitiveness of used questions according to their feedback times.
publishDate 2022
dc.date.none.fl_str_mv 2022-11
2022-11-01T00:00:00Z
2023-03-24T11:08:17Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/151149
url http://hdl.handle.net/10362/151149
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv mluisa.alvim@gmail.com
_version_ 1817545926375374848