Conversational Interactive Recommendation
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/151149 |
Resumo: | When we search for something online, sometimes we know what we want, but we do not know how to exactly describe it. To address this challenge, this thesis presents a framework based on reinforcement learning, which improves conversational assistants in order to get closer to the user’s desired product by asking a sequence of clarifying questions and giving recommendations. These clarifying questions are chosen before each interaction, in real-time, and are capable of narrowing down the search space, helping the user finding what he wants. In order for the assistant to decide which clarifying question to use, its neural network needs some information about the recommendation conversation. After the selection of the question, the assistant generates the question using a template, which might need some recommended products. Having generated the question, the assistant presents it to the user and gets his answer, from which extracts some information to update the recommendation conversation history. This framework can be served as a module inside projects and lets the recommendation conversation to evolve in various directions: minimizing the number of interactions, minimizing the repetitiveness of used questions and minimizing the repetitiveness of used questions according to their feedback times. |
id |
RCAP_334cab9f7d7dbe31630a4caf0415701e |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/151149 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Conversational Interactive RecommendationConversational AssistantConversational AgentTask-Oriented Conversational AgentRisk-aware Conversational AgentReinforcement LearningDeep Reinforcement LearningDomínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e InformáticaWhen we search for something online, sometimes we know what we want, but we do not know how to exactly describe it. To address this challenge, this thesis presents a framework based on reinforcement learning, which improves conversational assistants in order to get closer to the user’s desired product by asking a sequence of clarifying questions and giving recommendations. These clarifying questions are chosen before each interaction, in real-time, and are capable of narrowing down the search space, helping the user finding what he wants. In order for the assistant to decide which clarifying question to use, its neural network needs some information about the recommendation conversation. After the selection of the question, the assistant generates the question using a template, which might need some recommended products. Having generated the question, the assistant presents it to the user and gets his answer, from which extracts some information to update the recommendation conversation history. This framework can be served as a module inside projects and lets the recommendation conversation to evolve in various directions: minimizing the number of interactions, minimizing the repetitiveness of used questions and minimizing the repetitiveness of used questions according to their feedback times.Quando pesquisamos algo online, às vezes sabemos o que queremos, mas não sabe- mos como descrevê-lo exatamente. Para enfrentar este desafio, esta tese introduz uma framework baseada em aprendizagem por reforço, que melhora os assistentes de conversa- ção para se aproximarem do produto desejado pelo utilizador, através de uma sequência de perguntas esclarecedoras e dando recomendações. Estas perguntas esclarecedoras são escolhidas antes de cada interação, em tempo real, e são capazes de diminuir o espaço de procura, ajudando o utilizador a encontrar o que deseja. Para que o assistente decida qual pergunta esclarecedora usar, a sua rede neural precisa de algumas informações sobre a conversa de recomendação. Após a seleção da pergunta, o assistente gera a pergunta usando um template, que pode precisar de alguns produtos para recomendar. Gerada a pergunta, o assistente apresenta-a ao utilizador e obtém a resposta, da qual extrai algumas informações para atualizar o histórico da conversa de recomendação. Esta framework pode ser usada como um módulo em projetos e permite que a con- versa de recomendação evolua de várias formas: minimizando o número de interações, minimizando a repetitividade das perguntas usadas e minimizando a repetitividade das perguntas usadas de acordo com os tempos de feedback.Magalhães, JoãoSemedo, DavidRUNCorreia, Alexandre Teixeira Lobato2023-03-24T11:08:17Z2022-112022-11-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/151149enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-22T18:10:31Zoai:run.unl.pt:10362/151149Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-22T18:10:31Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Conversational Interactive Recommendation |
title |
Conversational Interactive Recommendation |
spellingShingle |
Conversational Interactive Recommendation Correia, Alexandre Teixeira Lobato Conversational Assistant Conversational Agent Task-Oriented Conversational Agent Risk-aware Conversational Agent Reinforcement Learning Deep Reinforcement Learning Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática |
title_short |
Conversational Interactive Recommendation |
title_full |
Conversational Interactive Recommendation |
title_fullStr |
Conversational Interactive Recommendation |
title_full_unstemmed |
Conversational Interactive Recommendation |
title_sort |
Conversational Interactive Recommendation |
author |
Correia, Alexandre Teixeira Lobato |
author_facet |
Correia, Alexandre Teixeira Lobato |
author_role |
author |
dc.contributor.none.fl_str_mv |
Magalhães, João Semedo, David RUN |
dc.contributor.author.fl_str_mv |
Correia, Alexandre Teixeira Lobato |
dc.subject.por.fl_str_mv |
Conversational Assistant Conversational Agent Task-Oriented Conversational Agent Risk-aware Conversational Agent Reinforcement Learning Deep Reinforcement Learning Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática |
topic |
Conversational Assistant Conversational Agent Task-Oriented Conversational Agent Risk-aware Conversational Agent Reinforcement Learning Deep Reinforcement Learning Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática |
description |
When we search for something online, sometimes we know what we want, but we do not know how to exactly describe it. To address this challenge, this thesis presents a framework based on reinforcement learning, which improves conversational assistants in order to get closer to the user’s desired product by asking a sequence of clarifying questions and giving recommendations. These clarifying questions are chosen before each interaction, in real-time, and are capable of narrowing down the search space, helping the user finding what he wants. In order for the assistant to decide which clarifying question to use, its neural network needs some information about the recommendation conversation. After the selection of the question, the assistant generates the question using a template, which might need some recommended products. Having generated the question, the assistant presents it to the user and gets his answer, from which extracts some information to update the recommendation conversation history. This framework can be served as a module inside projects and lets the recommendation conversation to evolve in various directions: minimizing the number of interactions, minimizing the repetitiveness of used questions and minimizing the repetitiveness of used questions according to their feedback times. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-11 2022-11-01T00:00:00Z 2023-03-24T11:08:17Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/151149 |
url |
http://hdl.handle.net/10362/151149 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817545926375374848 |