Material parameter identification of elastoplastic constitutive models using machine learning approaches
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/34581 |
Resumo: | Today, the vast majority of design tasks are based on simulation tools. However, the success of the simulation depends on the accurate identification of the constitutive parameters of materials, i.e., its calibration. The classical parameter identification strategy, which relies on homogeneous tests, does not provide accurate and robust results required by the automotive and aerospace industry. Recently, numerical inverse methods, such as the Finite Element Model Updating and the Virtual Fields Method, have been developed for identifying constitutive parameters based on heterogeneous tests. Although these methods have proven effective for linear and non-linear models, the parameter identification process is complex, making it computationally expensive. In this work, a machine learning (ML) algorithm is used to pursue the goal of parameter identification of non-linear models using heterogeneous tests. For that purpose, a ML inverse model is trained using the Finite Element model as data source. A statistical analysis is conducted to identify the correlation between the training dataset size, mechanical tests results and the material parameters. The goal is to understand the importance of the different inputs and to reduce the computational time. |
id |
RCAP_33727897af7b3a1e4fbcc70358f9e2b8 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/34581 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Material parameter identification of elastoplastic constitutive models using machine learning approachesMaterial Constitutive ModelElastoplasticityMachine LearningParameter IdentificationToday, the vast majority of design tasks are based on simulation tools. However, the success of the simulation depends on the accurate identification of the constitutive parameters of materials, i.e., its calibration. The classical parameter identification strategy, which relies on homogeneous tests, does not provide accurate and robust results required by the automotive and aerospace industry. Recently, numerical inverse methods, such as the Finite Element Model Updating and the Virtual Fields Method, have been developed for identifying constitutive parameters based on heterogeneous tests. Although these methods have proven effective for linear and non-linear models, the parameter identification process is complex, making it computationally expensive. In this work, a machine learning (ML) algorithm is used to pursue the goal of parameter identification of non-linear models using heterogeneous tests. For that purpose, a ML inverse model is trained using the Finite Element model as data source. A statistical analysis is conducted to identify the correlation between the training dataset size, mechanical tests results and the material parameters. The goal is to understand the importance of the different inputs and to reduce the computational time.Trans Tech Publications Ltd2022-09-09T11:10:09Z2022-01-01T00:00:00Z2022info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/34581eng1013-982610.4028/p-zr575dBastos, N.Prates, P.Andrade-Campos, A.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:06:14Zoai:ria.ua.pt:10773/34581Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:05:39.798004Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Material parameter identification of elastoplastic constitutive models using machine learning approaches |
title |
Material parameter identification of elastoplastic constitutive models using machine learning approaches |
spellingShingle |
Material parameter identification of elastoplastic constitutive models using machine learning approaches Bastos, N. Material Constitutive Model Elastoplasticity Machine Learning Parameter Identification |
title_short |
Material parameter identification of elastoplastic constitutive models using machine learning approaches |
title_full |
Material parameter identification of elastoplastic constitutive models using machine learning approaches |
title_fullStr |
Material parameter identification of elastoplastic constitutive models using machine learning approaches |
title_full_unstemmed |
Material parameter identification of elastoplastic constitutive models using machine learning approaches |
title_sort |
Material parameter identification of elastoplastic constitutive models using machine learning approaches |
author |
Bastos, N. |
author_facet |
Bastos, N. Prates, P. Andrade-Campos, A. |
author_role |
author |
author2 |
Prates, P. Andrade-Campos, A. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Bastos, N. Prates, P. Andrade-Campos, A. |
dc.subject.por.fl_str_mv |
Material Constitutive Model Elastoplasticity Machine Learning Parameter Identification |
topic |
Material Constitutive Model Elastoplasticity Machine Learning Parameter Identification |
description |
Today, the vast majority of design tasks are based on simulation tools. However, the success of the simulation depends on the accurate identification of the constitutive parameters of materials, i.e., its calibration. The classical parameter identification strategy, which relies on homogeneous tests, does not provide accurate and robust results required by the automotive and aerospace industry. Recently, numerical inverse methods, such as the Finite Element Model Updating and the Virtual Fields Method, have been developed for identifying constitutive parameters based on heterogeneous tests. Although these methods have proven effective for linear and non-linear models, the parameter identification process is complex, making it computationally expensive. In this work, a machine learning (ML) algorithm is used to pursue the goal of parameter identification of non-linear models using heterogeneous tests. For that purpose, a ML inverse model is trained using the Finite Element model as data source. A statistical analysis is conducted to identify the correlation between the training dataset size, mechanical tests results and the material parameters. The goal is to understand the importance of the different inputs and to reduce the computational time. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-09-09T11:10:09Z 2022-01-01T00:00:00Z 2022 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/34581 |
url |
http://hdl.handle.net/10773/34581 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1013-9826 10.4028/p-zr575d |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Trans Tech Publications Ltd |
publisher.none.fl_str_mv |
Trans Tech Publications Ltd |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137711932571648 |