On the identification of material constitutive model parameters using machine learning algorithms

Detalhes bibliográficos
Autor(a) principal: Marques, Armando
Data de Publicação: 2022
Outros Autores: Pereira, André, Ribeiro, Bernardete, Prates, Pedro A.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/34583
Resumo: This work aims to evaluate the predictive performance of various Machine Learning algorithms when applied to the prediction of material constitutive parameters, particularly the parameters of the Swift hardening law. For this, datasets were generated from the results of the numerical simulations of uniaxial tensile tests. The Machine Learning algorithms considered for this study are: Gaussian Process, Multi-layer Perceptron, Support Vector Regression, Decision Tree and Random Forest. These algorithms were used to train metamodels based on training sets considering different numbers of materials and input parameters, which were then used to predict the hardening law parameters. The Gaussian Process algorithm achieved the overall best predictive performances. The results obtained show the potential of Machine Learning algorithms for application on the identification of material constitutive parameters.
id RCAP_37378baf327f4cdd38b121d35f08e57e
oai_identifier_str oai:ria.ua.pt:10773/34583
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling On the identification of material constitutive model parameters using machine learning algorithmsSheet Metal FormingMachine LearningParameter IdentificationThis work aims to evaluate the predictive performance of various Machine Learning algorithms when applied to the prediction of material constitutive parameters, particularly the parameters of the Swift hardening law. For this, datasets were generated from the results of the numerical simulations of uniaxial tensile tests. The Machine Learning algorithms considered for this study are: Gaussian Process, Multi-layer Perceptron, Support Vector Regression, Decision Tree and Random Forest. These algorithms were used to train metamodels based on training sets considering different numbers of materials and input parameters, which were then used to predict the hardening law parameters. The Gaussian Process algorithm achieved the overall best predictive performances. The results obtained show the potential of Machine Learning algorithms for application on the identification of material constitutive parameters.Trans Tech Publications Ltd2022-09-09T11:17:04Z2022-07-01T00:00:00Z2022-07info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/34583eng1013-982610.4028/p-5hf550Marques, ArmandoPereira, AndréRibeiro, BernardetePrates, Pedro A.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:06:14Zoai:ria.ua.pt:10773/34583Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:05:39.842612Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv On the identification of material constitutive model parameters using machine learning algorithms
title On the identification of material constitutive model parameters using machine learning algorithms
spellingShingle On the identification of material constitutive model parameters using machine learning algorithms
Marques, Armando
Sheet Metal Forming
Machine Learning
Parameter Identification
title_short On the identification of material constitutive model parameters using machine learning algorithms
title_full On the identification of material constitutive model parameters using machine learning algorithms
title_fullStr On the identification of material constitutive model parameters using machine learning algorithms
title_full_unstemmed On the identification of material constitutive model parameters using machine learning algorithms
title_sort On the identification of material constitutive model parameters using machine learning algorithms
author Marques, Armando
author_facet Marques, Armando
Pereira, André
Ribeiro, Bernardete
Prates, Pedro A.
author_role author
author2 Pereira, André
Ribeiro, Bernardete
Prates, Pedro A.
author2_role author
author
author
dc.contributor.author.fl_str_mv Marques, Armando
Pereira, André
Ribeiro, Bernardete
Prates, Pedro A.
dc.subject.por.fl_str_mv Sheet Metal Forming
Machine Learning
Parameter Identification
topic Sheet Metal Forming
Machine Learning
Parameter Identification
description This work aims to evaluate the predictive performance of various Machine Learning algorithms when applied to the prediction of material constitutive parameters, particularly the parameters of the Swift hardening law. For this, datasets were generated from the results of the numerical simulations of uniaxial tensile tests. The Machine Learning algorithms considered for this study are: Gaussian Process, Multi-layer Perceptron, Support Vector Regression, Decision Tree and Random Forest. These algorithms were used to train metamodels based on training sets considering different numbers of materials and input parameters, which were then used to predict the hardening law parameters. The Gaussian Process algorithm achieved the overall best predictive performances. The results obtained show the potential of Machine Learning algorithms for application on the identification of material constitutive parameters.
publishDate 2022
dc.date.none.fl_str_mv 2022-09-09T11:17:04Z
2022-07-01T00:00:00Z
2022-07
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/34583
url http://hdl.handle.net/10773/34583
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1013-9826
10.4028/p-5hf550
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Trans Tech Publications Ltd
publisher.none.fl_str_mv Trans Tech Publications Ltd
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137711934668800