Big DNA datasets analysis under push down automata
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://hdl.handle.net/10216/115741 |
Resumo: | Consensus is a significant part that supports the identification of unknown information about animals, plants and insects around the globe. It represents a small part of Deoxyribonucleic acid (DNA) known as the DNA segment that carries all the information for investigation and verification. However, excessive datasets are the major challenges to mine the accurate meaning of the experiments. The datasets are increasing exponentially in ever seconds. In the present article, a memory saving consensus finding approach is organized. The principal component analysis (PCA) and independent component (ICA) are used to pre-process the training datasets. A comparison is carried out between these approaches with the Apriori algorithm. Furthermore, the push down automat (PDA) is applied for superior memory utilization. It iteratively frees the memory for storing targeted consensus by removing all the datasets that are not matched with the consensus. Afterward, the Apriori algorithm selects the desired consensus from limited values that are stored by the PDA. Finally, the Gauss-Seidel method is used to verify the consensus mathematically. |
id |
RCAP_339aed03ab9f7955c0aab4b3d6649fe0 |
---|---|
oai_identifier_str |
oai:repositorio-aberto.up.pt:10216/115741 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Big DNA datasets analysis under push down automataCiências da Saúde, Ciências médicas e da saúdeHealth sciences, Medical and Health sciencesConsensus is a significant part that supports the identification of unknown information about animals, plants and insects around the globe. It represents a small part of Deoxyribonucleic acid (DNA) known as the DNA segment that carries all the information for investigation and verification. However, excessive datasets are the major challenges to mine the accurate meaning of the experiments. The datasets are increasing exponentially in ever seconds. In the present article, a memory saving consensus finding approach is organized. The principal component analysis (PCA) and independent component (ICA) are used to pre-process the training datasets. A comparison is carried out between these approaches with the Apriori algorithm. Furthermore, the push down automat (PDA) is applied for superior memory utilization. It iteratively frees the memory for storing targeted consensus by removing all the datasets that are not matched with the consensus. Afterward, the Apriori algorithm selects the desired consensus from limited values that are stored by the PDA. Finally, the Gauss-Seidel method is used to verify the consensus mathematically.2018-082018-08-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/10216/115741eng1064-124610.3233/jifs-169695Md. Sarwar KamalMunesh Chandra TrivediJannat Binta AlamNilanjan DeyAmira S. AshourFuqian ShiJoão Manuel R. S. Tavaresinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-29T13:46:52Zoai:repositorio-aberto.up.pt:10216/115741Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T23:47:25.375004Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Big DNA datasets analysis under push down automata |
title |
Big DNA datasets analysis under push down automata |
spellingShingle |
Big DNA datasets analysis under push down automata Md. Sarwar Kamal Ciências da Saúde, Ciências médicas e da saúde Health sciences, Medical and Health sciences |
title_short |
Big DNA datasets analysis under push down automata |
title_full |
Big DNA datasets analysis under push down automata |
title_fullStr |
Big DNA datasets analysis under push down automata |
title_full_unstemmed |
Big DNA datasets analysis under push down automata |
title_sort |
Big DNA datasets analysis under push down automata |
author |
Md. Sarwar Kamal |
author_facet |
Md. Sarwar Kamal Munesh Chandra Trivedi Jannat Binta Alam Nilanjan Dey Amira S. Ashour Fuqian Shi João Manuel R. S. Tavares |
author_role |
author |
author2 |
Munesh Chandra Trivedi Jannat Binta Alam Nilanjan Dey Amira S. Ashour Fuqian Shi João Manuel R. S. Tavares |
author2_role |
author author author author author author |
dc.contributor.author.fl_str_mv |
Md. Sarwar Kamal Munesh Chandra Trivedi Jannat Binta Alam Nilanjan Dey Amira S. Ashour Fuqian Shi João Manuel R. S. Tavares |
dc.subject.por.fl_str_mv |
Ciências da Saúde, Ciências médicas e da saúde Health sciences, Medical and Health sciences |
topic |
Ciências da Saúde, Ciências médicas e da saúde Health sciences, Medical and Health sciences |
description |
Consensus is a significant part that supports the identification of unknown information about animals, plants and insects around the globe. It represents a small part of Deoxyribonucleic acid (DNA) known as the DNA segment that carries all the information for investigation and verification. However, excessive datasets are the major challenges to mine the accurate meaning of the experiments. The datasets are increasing exponentially in ever seconds. In the present article, a memory saving consensus finding approach is organized. The principal component analysis (PCA) and independent component (ICA) are used to pre-process the training datasets. A comparison is carried out between these approaches with the Apriori algorithm. Furthermore, the push down automat (PDA) is applied for superior memory utilization. It iteratively frees the memory for storing targeted consensus by removing all the datasets that are not matched with the consensus. Afterward, the Apriori algorithm selects the desired consensus from limited values that are stored by the PDA. Finally, the Gauss-Seidel method is used to verify the consensus mathematically. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-08 2018-08-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/10216/115741 |
url |
https://hdl.handle.net/10216/115741 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1064-1246 10.3233/jifs-169695 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799135791936438272 |