Big DNA datasets analysis under push down automata

Detalhes bibliográficos
Autor(a) principal: Md. Sarwar Kamal
Data de Publicação: 2018
Outros Autores: Munesh Chandra Trivedi, Jannat Binta Alam, Nilanjan Dey, Amira S. Ashour, Fuqian Shi, João Manuel R. S. Tavares
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://hdl.handle.net/10216/115741
Resumo: Consensus is a significant part that supports the identification of unknown information about animals, plants and insects around the globe. It represents a small part of Deoxyribonucleic acid (DNA) known as the DNA segment that carries all the information for investigation and verification. However, excessive datasets are the major challenges to mine the accurate meaning of the experiments. The datasets are increasing exponentially in ever seconds. In the present article, a memory saving consensus finding approach is organized. The principal component analysis (PCA) and independent component (ICA) are used to pre-process the training datasets. A comparison is carried out between these approaches with the Apriori algorithm. Furthermore, the push down automat (PDA) is applied for superior memory utilization. It iteratively frees the memory for storing targeted consensus by removing all the datasets that are not matched with the consensus. Afterward, the Apriori algorithm selects the desired consensus from limited values that are stored by the PDA. Finally, the Gauss-Seidel method is used to verify the consensus mathematically.
id RCAP_339aed03ab9f7955c0aab4b3d6649fe0
oai_identifier_str oai:repositorio-aberto.up.pt:10216/115741
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Big DNA datasets analysis under push down automataCiências da Saúde, Ciências médicas e da saúdeHealth sciences, Medical and Health sciencesConsensus is a significant part that supports the identification of unknown information about animals, plants and insects around the globe. It represents a small part of Deoxyribonucleic acid (DNA) known as the DNA segment that carries all the information for investigation and verification. However, excessive datasets are the major challenges to mine the accurate meaning of the experiments. The datasets are increasing exponentially in ever seconds. In the present article, a memory saving consensus finding approach is organized. The principal component analysis (PCA) and independent component (ICA) are used to pre-process the training datasets. A comparison is carried out between these approaches with the Apriori algorithm. Furthermore, the push down automat (PDA) is applied for superior memory utilization. It iteratively frees the memory for storing targeted consensus by removing all the datasets that are not matched with the consensus. Afterward, the Apriori algorithm selects the desired consensus from limited values that are stored by the PDA. Finally, the Gauss-Seidel method is used to verify the consensus mathematically.2018-082018-08-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/10216/115741eng1064-124610.3233/jifs-169695Md. Sarwar KamalMunesh Chandra TrivediJannat Binta AlamNilanjan DeyAmira S. AshourFuqian ShiJoão Manuel R. S. Tavaresinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-29T13:46:52Zoai:repositorio-aberto.up.pt:10216/115741Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T23:47:25.375004Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Big DNA datasets analysis under push down automata
title Big DNA datasets analysis under push down automata
spellingShingle Big DNA datasets analysis under push down automata
Md. Sarwar Kamal
Ciências da Saúde, Ciências médicas e da saúde
Health sciences, Medical and Health sciences
title_short Big DNA datasets analysis under push down automata
title_full Big DNA datasets analysis under push down automata
title_fullStr Big DNA datasets analysis under push down automata
title_full_unstemmed Big DNA datasets analysis under push down automata
title_sort Big DNA datasets analysis under push down automata
author Md. Sarwar Kamal
author_facet Md. Sarwar Kamal
Munesh Chandra Trivedi
Jannat Binta Alam
Nilanjan Dey
Amira S. Ashour
Fuqian Shi
João Manuel R. S. Tavares
author_role author
author2 Munesh Chandra Trivedi
Jannat Binta Alam
Nilanjan Dey
Amira S. Ashour
Fuqian Shi
João Manuel R. S. Tavares
author2_role author
author
author
author
author
author
dc.contributor.author.fl_str_mv Md. Sarwar Kamal
Munesh Chandra Trivedi
Jannat Binta Alam
Nilanjan Dey
Amira S. Ashour
Fuqian Shi
João Manuel R. S. Tavares
dc.subject.por.fl_str_mv Ciências da Saúde, Ciências médicas e da saúde
Health sciences, Medical and Health sciences
topic Ciências da Saúde, Ciências médicas e da saúde
Health sciences, Medical and Health sciences
description Consensus is a significant part that supports the identification of unknown information about animals, plants and insects around the globe. It represents a small part of Deoxyribonucleic acid (DNA) known as the DNA segment that carries all the information for investigation and verification. However, excessive datasets are the major challenges to mine the accurate meaning of the experiments. The datasets are increasing exponentially in ever seconds. In the present article, a memory saving consensus finding approach is organized. The principal component analysis (PCA) and independent component (ICA) are used to pre-process the training datasets. A comparison is carried out between these approaches with the Apriori algorithm. Furthermore, the push down automat (PDA) is applied for superior memory utilization. It iteratively frees the memory for storing targeted consensus by removing all the datasets that are not matched with the consensus. Afterward, the Apriori algorithm selects the desired consensus from limited values that are stored by the PDA. Finally, the Gauss-Seidel method is used to verify the consensus mathematically.
publishDate 2018
dc.date.none.fl_str_mv 2018-08
2018-08-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10216/115741
url https://hdl.handle.net/10216/115741
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1064-1246
10.3233/jifs-169695
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799135791936438272