Hidden Markov model and Chapman Kolmogrov for protein structures prediction from images

Detalhes bibliográficos
Autor(a) principal: Md. Sarwar Kamal
Data de Publicação: 2017
Outros Autores: Linkon Chowdhury, Mohammad Ibrahim Khan, Amira S. Ashour, João Manuel R. S. Tavares, Nilanjan Dey
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://hdl.handle.net/10216/103549
Resumo: Protein structure prediction and analysis are more significant for living organs to perfect asses the living organ functionalities. Several protein structure prediction methods use neural network (NN). However, the Hidden Markov model is more interpretable and effective for more biological data analysis compared to the NN. It employs statistical data analysis to enhance the prediction accuracy. The current work proposed a protein prediction approach from protein images based on Hidden Markov Model and Chapman Kolmogrov equation. Initially, a preprocessing stage was applied for protein images binarization using Otsu technique in order to convert the protein image into binary matrix. Subsequently, two counting algorithms, namely the Flood fill and Warshall are employed to classify the protein structures. Finally, Hidden Markov model and Chapman Kolmogrov equation are applied on the classified structures for predicting the protein structure. The execution time and algorithmic performances are measured to evaluate the primary, secondary and tertiary protein structure prediction.
id RCAP_a8e0a1a49265c24bf47891d4f2e1fcb9
oai_identifier_str oai:repositorio-aberto.up.pt:10216/103549
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Hidden Markov model and Chapman Kolmogrov for protein structures prediction from imagesCiências Tecnológicas, Ciências médicas e da saúdeTechnological sciences, Medical and Health sciencesProtein structure prediction and analysis are more significant for living organs to perfect asses the living organ functionalities. Several protein structure prediction methods use neural network (NN). However, the Hidden Markov model is more interpretable and effective for more biological data analysis compared to the NN. It employs statistical data analysis to enhance the prediction accuracy. The current work proposed a protein prediction approach from protein images based on Hidden Markov Model and Chapman Kolmogrov equation. Initially, a preprocessing stage was applied for protein images binarization using Otsu technique in order to convert the protein image into binary matrix. Subsequently, two counting algorithms, namely the Flood fill and Warshall are employed to classify the protein structures. Finally, Hidden Markov model and Chapman Kolmogrov equation are applied on the classified structures for predicting the protein structure. The execution time and algorithmic performances are measured to evaluate the primary, secondary and tertiary protein structure prediction.2017-06-012017-06-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/10216/103549eng1476-927110.1016/j.compbiolchem.2017.04.003Md. Sarwar KamalLinkon ChowdhuryMohammad Ibrahim KhanAmira S. AshourJoão Manuel R. S. TavaresNilanjan Deyinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-29T15:57:01Zoai:repositorio-aberto.up.pt:10216/103549Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:35:42.614676Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Hidden Markov model and Chapman Kolmogrov for protein structures prediction from images
title Hidden Markov model and Chapman Kolmogrov for protein structures prediction from images
spellingShingle Hidden Markov model and Chapman Kolmogrov for protein structures prediction from images
Md. Sarwar Kamal
Ciências Tecnológicas, Ciências médicas e da saúde
Technological sciences, Medical and Health sciences
title_short Hidden Markov model and Chapman Kolmogrov for protein structures prediction from images
title_full Hidden Markov model and Chapman Kolmogrov for protein structures prediction from images
title_fullStr Hidden Markov model and Chapman Kolmogrov for protein structures prediction from images
title_full_unstemmed Hidden Markov model and Chapman Kolmogrov for protein structures prediction from images
title_sort Hidden Markov model and Chapman Kolmogrov for protein structures prediction from images
author Md. Sarwar Kamal
author_facet Md. Sarwar Kamal
Linkon Chowdhury
Mohammad Ibrahim Khan
Amira S. Ashour
João Manuel R. S. Tavares
Nilanjan Dey
author_role author
author2 Linkon Chowdhury
Mohammad Ibrahim Khan
Amira S. Ashour
João Manuel R. S. Tavares
Nilanjan Dey
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Md. Sarwar Kamal
Linkon Chowdhury
Mohammad Ibrahim Khan
Amira S. Ashour
João Manuel R. S. Tavares
Nilanjan Dey
dc.subject.por.fl_str_mv Ciências Tecnológicas, Ciências médicas e da saúde
Technological sciences, Medical and Health sciences
topic Ciências Tecnológicas, Ciências médicas e da saúde
Technological sciences, Medical and Health sciences
description Protein structure prediction and analysis are more significant for living organs to perfect asses the living organ functionalities. Several protein structure prediction methods use neural network (NN). However, the Hidden Markov model is more interpretable and effective for more biological data analysis compared to the NN. It employs statistical data analysis to enhance the prediction accuracy. The current work proposed a protein prediction approach from protein images based on Hidden Markov Model and Chapman Kolmogrov equation. Initially, a preprocessing stage was applied for protein images binarization using Otsu technique in order to convert the protein image into binary matrix. Subsequently, two counting algorithms, namely the Flood fill and Warshall are employed to classify the protein structures. Finally, Hidden Markov model and Chapman Kolmogrov equation are applied on the classified structures for predicting the protein structure. The execution time and algorithmic performances are measured to evaluate the primary, secondary and tertiary protein structure prediction.
publishDate 2017
dc.date.none.fl_str_mv 2017-06-01
2017-06-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10216/103549
url https://hdl.handle.net/10216/103549
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1476-9271
10.1016/j.compbiolchem.2017.04.003
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136266266083328