Hidden Markov model and Chapman Kolmogrov for protein structures prediction from images
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://hdl.handle.net/10216/103549 |
Resumo: | Protein structure prediction and analysis are more significant for living organs to perfect asses the living organ functionalities. Several protein structure prediction methods use neural network (NN). However, the Hidden Markov model is more interpretable and effective for more biological data analysis compared to the NN. It employs statistical data analysis to enhance the prediction accuracy. The current work proposed a protein prediction approach from protein images based on Hidden Markov Model and Chapman Kolmogrov equation. Initially, a preprocessing stage was applied for protein images binarization using Otsu technique in order to convert the protein image into binary matrix. Subsequently, two counting algorithms, namely the Flood fill and Warshall are employed to classify the protein structures. Finally, Hidden Markov model and Chapman Kolmogrov equation are applied on the classified structures for predicting the protein structure. The execution time and algorithmic performances are measured to evaluate the primary, secondary and tertiary protein structure prediction. |
id |
RCAP_a8e0a1a49265c24bf47891d4f2e1fcb9 |
---|---|
oai_identifier_str |
oai:repositorio-aberto.up.pt:10216/103549 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Hidden Markov model and Chapman Kolmogrov for protein structures prediction from imagesCiências Tecnológicas, Ciências médicas e da saúdeTechnological sciences, Medical and Health sciencesProtein structure prediction and analysis are more significant for living organs to perfect asses the living organ functionalities. Several protein structure prediction methods use neural network (NN). However, the Hidden Markov model is more interpretable and effective for more biological data analysis compared to the NN. It employs statistical data analysis to enhance the prediction accuracy. The current work proposed a protein prediction approach from protein images based on Hidden Markov Model and Chapman Kolmogrov equation. Initially, a preprocessing stage was applied for protein images binarization using Otsu technique in order to convert the protein image into binary matrix. Subsequently, two counting algorithms, namely the Flood fill and Warshall are employed to classify the protein structures. Finally, Hidden Markov model and Chapman Kolmogrov equation are applied on the classified structures for predicting the protein structure. The execution time and algorithmic performances are measured to evaluate the primary, secondary and tertiary protein structure prediction.2017-06-012017-06-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/10216/103549eng1476-927110.1016/j.compbiolchem.2017.04.003Md. Sarwar KamalLinkon ChowdhuryMohammad Ibrahim KhanAmira S. AshourJoão Manuel R. S. TavaresNilanjan Deyinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-29T15:57:01Zoai:repositorio-aberto.up.pt:10216/103549Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:35:42.614676Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Hidden Markov model and Chapman Kolmogrov for protein structures prediction from images |
title |
Hidden Markov model and Chapman Kolmogrov for protein structures prediction from images |
spellingShingle |
Hidden Markov model and Chapman Kolmogrov for protein structures prediction from images Md. Sarwar Kamal Ciências Tecnológicas, Ciências médicas e da saúde Technological sciences, Medical and Health sciences |
title_short |
Hidden Markov model and Chapman Kolmogrov for protein structures prediction from images |
title_full |
Hidden Markov model and Chapman Kolmogrov for protein structures prediction from images |
title_fullStr |
Hidden Markov model and Chapman Kolmogrov for protein structures prediction from images |
title_full_unstemmed |
Hidden Markov model and Chapman Kolmogrov for protein structures prediction from images |
title_sort |
Hidden Markov model and Chapman Kolmogrov for protein structures prediction from images |
author |
Md. Sarwar Kamal |
author_facet |
Md. Sarwar Kamal Linkon Chowdhury Mohammad Ibrahim Khan Amira S. Ashour João Manuel R. S. Tavares Nilanjan Dey |
author_role |
author |
author2 |
Linkon Chowdhury Mohammad Ibrahim Khan Amira S. Ashour João Manuel R. S. Tavares Nilanjan Dey |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Md. Sarwar Kamal Linkon Chowdhury Mohammad Ibrahim Khan Amira S. Ashour João Manuel R. S. Tavares Nilanjan Dey |
dc.subject.por.fl_str_mv |
Ciências Tecnológicas, Ciências médicas e da saúde Technological sciences, Medical and Health sciences |
topic |
Ciências Tecnológicas, Ciências médicas e da saúde Technological sciences, Medical and Health sciences |
description |
Protein structure prediction and analysis are more significant for living organs to perfect asses the living organ functionalities. Several protein structure prediction methods use neural network (NN). However, the Hidden Markov model is more interpretable and effective for more biological data analysis compared to the NN. It employs statistical data analysis to enhance the prediction accuracy. The current work proposed a protein prediction approach from protein images based on Hidden Markov Model and Chapman Kolmogrov equation. Initially, a preprocessing stage was applied for protein images binarization using Otsu technique in order to convert the protein image into binary matrix. Subsequently, two counting algorithms, namely the Flood fill and Warshall are employed to classify the protein structures. Finally, Hidden Markov model and Chapman Kolmogrov equation are applied on the classified structures for predicting the protein structure. The execution time and algorithmic performances are measured to evaluate the primary, secondary and tertiary protein structure prediction. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-06-01 2017-06-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/10216/103549 |
url |
https://hdl.handle.net/10216/103549 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1476-9271 10.1016/j.compbiolchem.2017.04.003 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799136266266083328 |