Universal central extensions of Hom-Leibniz n-algebras
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/11110/1491 |
Resumo: | We construct homology with trivial coefficients of Hom-Leibniz n-algebras. We introduce and characterize universal (α)-central extensions of Hom-Leibniz n-algebras. In particular, we show their interplay with the zero-th and first homology with trivial coefficients. When n = 2we recover the corresponding results on universal central extensions of Hom-Leibniz algebras. The notion of non-abelian tensor product of Hom-Leibniz n-algebras is introduced and we establish its relationship with universal central extensions. A generalization of the concept and properties of unicentral Leibniz algebras to the setting of Hom-Leibniz n-algebras is developed. |
id |
RCAP_33c189ba1bef7b532f19731be08798bf |
---|---|
oai_identifier_str |
oai:ciencipca.ipca.pt:11110/1491 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Universal central extensions of Hom-Leibniz n-algebrasHom-Leibniz n-algebra; universal (α)-central extension; perfect Hom-Leibniz n-algebra; non-abelian tensor product; unicentral Hom-Leibniz n-algebrauniversal (α)-central extensionperfect Hom-Leibniz n-algebranon-abelian tensor product;unicentral Hom-Leibniz n-algebraWe construct homology with trivial coefficients of Hom-Leibniz n-algebras. We introduce and characterize universal (α)-central extensions of Hom-Leibniz n-algebras. In particular, we show their interplay with the zero-th and first homology with trivial coefficients. When n = 2we recover the corresponding results on universal central extensions of Hom-Leibniz algebras. The notion of non-abelian tensor product of Hom-Leibniz n-algebras is introduced and we establish its relationship with universal central extensions. A generalization of the concept and properties of unicentral Leibniz algebras to the setting of Hom-Leibniz n-algebras is developed.Linear and Multilinear Algebra2018-12-10T14:51:19Z2018-12-10T14:51:19Z2017-11-16T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/11110/1491oai:ciencipca.ipca.pt:11110/1491engISSN: 0308-1087 (Print) 1563-5139 (Online) Journal homepage: http://www.tandfonline.com/loi/glma20https://doi.org/10.1080/03081087.2017.1399980http://hdl.handle.net/11110/1491Mirás, José Manuel CasasRego, Natália Maria Pachecoinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2022-09-05T12:52:45Zoai:ciencipca.ipca.pt:11110/1491Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T15:01:42.289784Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Universal central extensions of Hom-Leibniz n-algebras |
title |
Universal central extensions of Hom-Leibniz n-algebras |
spellingShingle |
Universal central extensions of Hom-Leibniz n-algebras Mirás, José Manuel Casas Hom-Leibniz n-algebra; universal (α)-central extension; perfect Hom-Leibniz n-algebra; non-abelian tensor product; unicentral Hom-Leibniz n-algebra universal (α)-central extension perfect Hom-Leibniz n-algebra non-abelian tensor product; unicentral Hom-Leibniz n-algebra |
title_short |
Universal central extensions of Hom-Leibniz n-algebras |
title_full |
Universal central extensions of Hom-Leibniz n-algebras |
title_fullStr |
Universal central extensions of Hom-Leibniz n-algebras |
title_full_unstemmed |
Universal central extensions of Hom-Leibniz n-algebras |
title_sort |
Universal central extensions of Hom-Leibniz n-algebras |
author |
Mirás, José Manuel Casas |
author_facet |
Mirás, José Manuel Casas Rego, Natália Maria Pacheco |
author_role |
author |
author2 |
Rego, Natália Maria Pacheco |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Mirás, José Manuel Casas Rego, Natália Maria Pacheco |
dc.subject.por.fl_str_mv |
Hom-Leibniz n-algebra; universal (α)-central extension; perfect Hom-Leibniz n-algebra; non-abelian tensor product; unicentral Hom-Leibniz n-algebra universal (α)-central extension perfect Hom-Leibniz n-algebra non-abelian tensor product; unicentral Hom-Leibniz n-algebra |
topic |
Hom-Leibniz n-algebra; universal (α)-central extension; perfect Hom-Leibniz n-algebra; non-abelian tensor product; unicentral Hom-Leibniz n-algebra universal (α)-central extension perfect Hom-Leibniz n-algebra non-abelian tensor product; unicentral Hom-Leibniz n-algebra |
description |
We construct homology with trivial coefficients of Hom-Leibniz n-algebras. We introduce and characterize universal (α)-central extensions of Hom-Leibniz n-algebras. In particular, we show their interplay with the zero-th and first homology with trivial coefficients. When n = 2we recover the corresponding results on universal central extensions of Hom-Leibniz algebras. The notion of non-abelian tensor product of Hom-Leibniz n-algebras is introduced and we establish its relationship with universal central extensions. A generalization of the concept and properties of unicentral Leibniz algebras to the setting of Hom-Leibniz n-algebras is developed. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-11-16T00:00:00Z 2018-12-10T14:51:19Z 2018-12-10T14:51:19Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/11110/1491 oai:ciencipca.ipca.pt:11110/1491 |
url |
http://hdl.handle.net/11110/1491 |
identifier_str_mv |
oai:ciencipca.ipca.pt:11110/1491 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
ISSN: 0308-1087 (Print) 1563-5139 (Online) Journal homepage: http://www.tandfonline.com/loi/glma20 https://doi.org/10.1080/03081087.2017.1399980 http://hdl.handle.net/11110/1491 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Linear and Multilinear Algebra |
publisher.none.fl_str_mv |
Linear and Multilinear Algebra |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799129886532567040 |