Universal central extensions of Hom-Leibniz n-algebras

Detalhes bibliográficos
Autor(a) principal: Mirás, José Manuel Casas
Data de Publicação: 2017
Outros Autores: Rego, Natália Maria Pacheco
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/11110/1491
Resumo: We construct homology with trivial coefficients of Hom-Leibniz n-algebras. We introduce and characterize universal (α)-central extensions of Hom-Leibniz n-algebras. In particular, we show their interplay with the zero-th and first homology with trivial coefficients. When n = 2we recover the corresponding results on universal central extensions of Hom-Leibniz algebras. The notion of non-abelian tensor product of Hom-Leibniz n-algebras is introduced and we establish its relationship with universal central extensions. A generalization of the concept and properties of unicentral Leibniz algebras to the setting of Hom-Leibniz n-algebras is developed.
id RCAP_33c189ba1bef7b532f19731be08798bf
oai_identifier_str oai:ciencipca.ipca.pt:11110/1491
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Universal central extensions of Hom-Leibniz n-algebrasHom-Leibniz n-algebra; universal (α)-central extension; perfect Hom-Leibniz n-algebra; non-abelian tensor product; unicentral Hom-Leibniz n-algebrauniversal (α)-central extensionperfect Hom-Leibniz n-algebranon-abelian tensor product;unicentral Hom-Leibniz n-algebraWe construct homology with trivial coefficients of Hom-Leibniz n-algebras. We introduce and characterize universal (α)-central extensions of Hom-Leibniz n-algebras. In particular, we show their interplay with the zero-th and first homology with trivial coefficients. When n = 2we recover the corresponding results on universal central extensions of Hom-Leibniz algebras. The notion of non-abelian tensor product of Hom-Leibniz n-algebras is introduced and we establish its relationship with universal central extensions. A generalization of the concept and properties of unicentral Leibniz algebras to the setting of Hom-Leibniz n-algebras is developed.Linear and Multilinear Algebra2018-12-10T14:51:19Z2018-12-10T14:51:19Z2017-11-16T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/11110/1491oai:ciencipca.ipca.pt:11110/1491engISSN: 0308-1087 (Print) 1563-5139 (Online) Journal homepage: http://www.tandfonline.com/loi/glma20https://doi.org/10.1080/03081087.2017.1399980http://hdl.handle.net/11110/1491Mirás, José Manuel CasasRego, Natália Maria Pachecoinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2022-09-05T12:52:45Zoai:ciencipca.ipca.pt:11110/1491Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T15:01:42.289784Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Universal central extensions of Hom-Leibniz n-algebras
title Universal central extensions of Hom-Leibniz n-algebras
spellingShingle Universal central extensions of Hom-Leibniz n-algebras
Mirás, José Manuel Casas
Hom-Leibniz n-algebra; universal (α)-central extension; perfect Hom-Leibniz n-algebra; non-abelian tensor product; unicentral Hom-Leibniz n-algebra
universal (α)-central extension
perfect Hom-Leibniz n-algebra
non-abelian tensor product;
unicentral Hom-Leibniz n-algebra
title_short Universal central extensions of Hom-Leibniz n-algebras
title_full Universal central extensions of Hom-Leibniz n-algebras
title_fullStr Universal central extensions of Hom-Leibniz n-algebras
title_full_unstemmed Universal central extensions of Hom-Leibniz n-algebras
title_sort Universal central extensions of Hom-Leibniz n-algebras
author Mirás, José Manuel Casas
author_facet Mirás, José Manuel Casas
Rego, Natália Maria Pacheco
author_role author
author2 Rego, Natália Maria Pacheco
author2_role author
dc.contributor.author.fl_str_mv Mirás, José Manuel Casas
Rego, Natália Maria Pacheco
dc.subject.por.fl_str_mv Hom-Leibniz n-algebra; universal (α)-central extension; perfect Hom-Leibniz n-algebra; non-abelian tensor product; unicentral Hom-Leibniz n-algebra
universal (α)-central extension
perfect Hom-Leibniz n-algebra
non-abelian tensor product;
unicentral Hom-Leibniz n-algebra
topic Hom-Leibniz n-algebra; universal (α)-central extension; perfect Hom-Leibniz n-algebra; non-abelian tensor product; unicentral Hom-Leibniz n-algebra
universal (α)-central extension
perfect Hom-Leibniz n-algebra
non-abelian tensor product;
unicentral Hom-Leibniz n-algebra
description We construct homology with trivial coefficients of Hom-Leibniz n-algebras. We introduce and characterize universal (α)-central extensions of Hom-Leibniz n-algebras. In particular, we show their interplay with the zero-th and first homology with trivial coefficients. When n = 2we recover the corresponding results on universal central extensions of Hom-Leibniz algebras. The notion of non-abelian tensor product of Hom-Leibniz n-algebras is introduced and we establish its relationship with universal central extensions. A generalization of the concept and properties of unicentral Leibniz algebras to the setting of Hom-Leibniz n-algebras is developed.
publishDate 2017
dc.date.none.fl_str_mv 2017-11-16T00:00:00Z
2018-12-10T14:51:19Z
2018-12-10T14:51:19Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/11110/1491
oai:ciencipca.ipca.pt:11110/1491
url http://hdl.handle.net/11110/1491
identifier_str_mv oai:ciencipca.ipca.pt:11110/1491
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv ISSN: 0308-1087 (Print) 1563-5139 (Online) Journal homepage: http://www.tandfonline.com/loi/glma20
https://doi.org/10.1080/03081087.2017.1399980
http://hdl.handle.net/11110/1491
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Linear and Multilinear Algebra
publisher.none.fl_str_mv Linear and Multilinear Algebra
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799129886532567040