A non-abelian Hom-Leibniz tensor product and applications
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/11110/1296 |
Resumo: | The notion of non-abelian Hom–Leibniz tensor product is introduced and some properties are established. This tensor product is used in the description of the universal (α-)central extensions of Hom–Leibniz algebras. We also give its application to the Hochschild homology of Hom-associative algebras. |
id |
RCAP_f454a534c73abc8e4fab6dfe66c8547b |
---|---|
oai_identifier_str |
oai:ciencipca.ipca.pt:11110/1296 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
A non-abelian Hom-Leibniz tensor product and applicationsHom–Leibniz algebranon-abelian tensor productuniversal (α)-central extensionHom-associative algebraHochschild homologyThe notion of non-abelian Hom–Leibniz tensor product is introduced and some properties are established. This tensor product is used in the description of the universal (α-)central extensions of Hom–Leibniz algebras. We also give its application to the Hochschild homology of Hom-associative algebras.The first and the second authors were supported by Ministerio de Economía y Competitividad (Spain) (European FEDER support included), [grant number MTM2016-79661-P]. The second author was also supported by Shota Rustaveli National Science Foundation, [grant number FR/189/5- 113/14].Linear and Multilinear Algebra2017-06-29T11:26:35Z2017-06-29T11:26:35Z2017-06-21T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/11110/1296oai:ciencipca.ipca.pt:11110/1296engISSN: 0308-1087 (Print) 1563-5139 (Online) Journal homepage: http://www.tandfonline.com/loi/glma200308-1087 (Print) 1563-5139 (Online)http://hdl.handle.net/11110/1296Mirás, José Manuel CasasKmaladze, EmzarRego, Natália Maria Pachecoinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2022-09-05T12:52:43Zoai:ciencipca.ipca.pt:11110/1296Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T15:01:40.957915Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
A non-abelian Hom-Leibniz tensor product and applications |
title |
A non-abelian Hom-Leibniz tensor product and applications |
spellingShingle |
A non-abelian Hom-Leibniz tensor product and applications Mirás, José Manuel Casas Hom–Leibniz algebra non-abelian tensor product universal (α)-central extension Hom-associative algebra Hochschild homology |
title_short |
A non-abelian Hom-Leibniz tensor product and applications |
title_full |
A non-abelian Hom-Leibniz tensor product and applications |
title_fullStr |
A non-abelian Hom-Leibniz tensor product and applications |
title_full_unstemmed |
A non-abelian Hom-Leibniz tensor product and applications |
title_sort |
A non-abelian Hom-Leibniz tensor product and applications |
author |
Mirás, José Manuel Casas |
author_facet |
Mirás, José Manuel Casas Kmaladze, Emzar Rego, Natália Maria Pacheco |
author_role |
author |
author2 |
Kmaladze, Emzar Rego, Natália Maria Pacheco |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Mirás, José Manuel Casas Kmaladze, Emzar Rego, Natália Maria Pacheco |
dc.subject.por.fl_str_mv |
Hom–Leibniz algebra non-abelian tensor product universal (α)-central extension Hom-associative algebra Hochschild homology |
topic |
Hom–Leibniz algebra non-abelian tensor product universal (α)-central extension Hom-associative algebra Hochschild homology |
description |
The notion of non-abelian Hom–Leibniz tensor product is introduced and some properties are established. This tensor product is used in the description of the universal (α-)central extensions of Hom–Leibniz algebras. We also give its application to the Hochschild homology of Hom-associative algebras. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-06-29T11:26:35Z 2017-06-29T11:26:35Z 2017-06-21T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/11110/1296 oai:ciencipca.ipca.pt:11110/1296 |
url |
http://hdl.handle.net/11110/1296 |
identifier_str_mv |
oai:ciencipca.ipca.pt:11110/1296 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
ISSN: 0308-1087 (Print) 1563-5139 (Online) Journal homepage: http://www.tandfonline.com/loi/glma20 0308-1087 (Print) 1563-5139 (Online) http://hdl.handle.net/11110/1296 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Linear and Multilinear Algebra |
publisher.none.fl_str_mv |
Linear and Multilinear Algebra |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799129886496915456 |