A non-abelian Hom-Leibniz tensor product and applications

Detalhes bibliográficos
Autor(a) principal: Mirás, José Manuel Casas
Data de Publicação: 2017
Outros Autores: Kmaladze, Emzar, Rego, Natália Maria Pacheco
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/11110/1296
Resumo: The notion of non-abelian Hom–Leibniz tensor product is introduced and some properties are established. This tensor product is used in the description of the universal (α-)central extensions of Hom–Leibniz algebras. We also give its application to the Hochschild homology of Hom-associative algebras.
id RCAP_f454a534c73abc8e4fab6dfe66c8547b
oai_identifier_str oai:ciencipca.ipca.pt:11110/1296
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling A non-abelian Hom-Leibniz tensor product and applicationsHom–Leibniz algebranon-abelian tensor productuniversal (α)-central extensionHom-associative algebraHochschild homologyThe notion of non-abelian Hom–Leibniz tensor product is introduced and some properties are established. This tensor product is used in the description of the universal (α-)central extensions of Hom–Leibniz algebras. We also give its application to the Hochschild homology of Hom-associative algebras.The first and the second authors were supported by Ministerio de Economía y Competitividad (Spain) (European FEDER support included), [grant number MTM2016-79661-P]. The second author was also supported by Shota Rustaveli National Science Foundation, [grant number FR/189/5- 113/14].Linear and Multilinear Algebra2017-06-29T11:26:35Z2017-06-29T11:26:35Z2017-06-21T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/11110/1296oai:ciencipca.ipca.pt:11110/1296engISSN: 0308-1087 (Print) 1563-5139 (Online) Journal homepage: http://www.tandfonline.com/loi/glma200308-1087 (Print) 1563-5139 (Online)http://hdl.handle.net/11110/1296Mirás, José Manuel CasasKmaladze, EmzarRego, Natália Maria Pachecoinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2022-09-05T12:52:43Zoai:ciencipca.ipca.pt:11110/1296Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T15:01:40.957915Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv A non-abelian Hom-Leibniz tensor product and applications
title A non-abelian Hom-Leibniz tensor product and applications
spellingShingle A non-abelian Hom-Leibniz tensor product and applications
Mirás, José Manuel Casas
Hom–Leibniz algebra
non-abelian tensor product
universal (α)-central extension
Hom-associative algebra
Hochschild homology
title_short A non-abelian Hom-Leibniz tensor product and applications
title_full A non-abelian Hom-Leibniz tensor product and applications
title_fullStr A non-abelian Hom-Leibniz tensor product and applications
title_full_unstemmed A non-abelian Hom-Leibniz tensor product and applications
title_sort A non-abelian Hom-Leibniz tensor product and applications
author Mirás, José Manuel Casas
author_facet Mirás, José Manuel Casas
Kmaladze, Emzar
Rego, Natália Maria Pacheco
author_role author
author2 Kmaladze, Emzar
Rego, Natália Maria Pacheco
author2_role author
author
dc.contributor.author.fl_str_mv Mirás, José Manuel Casas
Kmaladze, Emzar
Rego, Natália Maria Pacheco
dc.subject.por.fl_str_mv Hom–Leibniz algebra
non-abelian tensor product
universal (α)-central extension
Hom-associative algebra
Hochschild homology
topic Hom–Leibniz algebra
non-abelian tensor product
universal (α)-central extension
Hom-associative algebra
Hochschild homology
description The notion of non-abelian Hom–Leibniz tensor product is introduced and some properties are established. This tensor product is used in the description of the universal (α-)central extensions of Hom–Leibniz algebras. We also give its application to the Hochschild homology of Hom-associative algebras.
publishDate 2017
dc.date.none.fl_str_mv 2017-06-29T11:26:35Z
2017-06-29T11:26:35Z
2017-06-21T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/11110/1296
oai:ciencipca.ipca.pt:11110/1296
url http://hdl.handle.net/11110/1296
identifier_str_mv oai:ciencipca.ipca.pt:11110/1296
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv ISSN: 0308-1087 (Print) 1563-5139 (Online) Journal homepage: http://www.tandfonline.com/loi/glma20
0308-1087 (Print) 1563-5139 (Online)
http://hdl.handle.net/11110/1296
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Linear and Multilinear Algebra
publisher.none.fl_str_mv Linear and Multilinear Algebra
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799129886496915456