A 2D Hopfield Neural Network approach to mechanical beam damage detection
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/14915 |
Resumo: | The aim of this paper is to present a method based on a 2D Hopfield Neural Network for online damage detection in beams subjected to external forces. The underlying idea of the method is that a significant change in the beam model parameters can be taken as a sign of damage occurrence in the structural system. In this way, damage detection can be associated to an identification problem. More concretely, a 2D Hopfield Neural Network uses information about the way the beam vibrates and the external forces that are applied to it to obtain time-evolving estimates of the beam parameters at the different beam points. The neural network organizes its input information based on the Euler-Bernoulli model for beam vibrations. Its performance is tested with vibration data generated by means of a different model, namely Timonshenko's, in order to produce more realistic simulation conditions. |
id |
RCAP_3404c9b1a3a386f8dd73bc8e22901f57 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/14915 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
A 2D Hopfield Neural Network approach to mechanical beam damage detection2D Hopfield Neural NetworkEuler-Bernoulli beam modelTimoshenko beam modelDamage detectionThe aim of this paper is to present a method based on a 2D Hopfield Neural Network for online damage detection in beams subjected to external forces. The underlying idea of the method is that a significant change in the beam model parameters can be taken as a sign of damage occurrence in the structural system. In this way, damage detection can be associated to an identification problem. More concretely, a 2D Hopfield Neural Network uses information about the way the beam vibrates and the external forces that are applied to it to obtain time-evolving estimates of the beam parameters at the different beam points. The neural network organizes its input information based on the Euler-Bernoulli model for beam vibrations. Its performance is tested with vibration data generated by means of a different model, namely Timonshenko's, in order to produce more realistic simulation conditions.Springer2015-12-01T17:12:05Z2015-10-01T00:00:00Z2015-10info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/14915eng1573-082410.1007/s11045-015-0342-7Almeida, JulianaAlonso, HugoRibeiro, PedroRocha, Paulainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:27:25Zoai:ria.ua.pt:10773/14915Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:50:23.556273Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
A 2D Hopfield Neural Network approach to mechanical beam damage detection |
title |
A 2D Hopfield Neural Network approach to mechanical beam damage detection |
spellingShingle |
A 2D Hopfield Neural Network approach to mechanical beam damage detection Almeida, Juliana 2D Hopfield Neural Network Euler-Bernoulli beam model Timoshenko beam model Damage detection |
title_short |
A 2D Hopfield Neural Network approach to mechanical beam damage detection |
title_full |
A 2D Hopfield Neural Network approach to mechanical beam damage detection |
title_fullStr |
A 2D Hopfield Neural Network approach to mechanical beam damage detection |
title_full_unstemmed |
A 2D Hopfield Neural Network approach to mechanical beam damage detection |
title_sort |
A 2D Hopfield Neural Network approach to mechanical beam damage detection |
author |
Almeida, Juliana |
author_facet |
Almeida, Juliana Alonso, Hugo Ribeiro, Pedro Rocha, Paula |
author_role |
author |
author2 |
Alonso, Hugo Ribeiro, Pedro Rocha, Paula |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Almeida, Juliana Alonso, Hugo Ribeiro, Pedro Rocha, Paula |
dc.subject.por.fl_str_mv |
2D Hopfield Neural Network Euler-Bernoulli beam model Timoshenko beam model Damage detection |
topic |
2D Hopfield Neural Network Euler-Bernoulli beam model Timoshenko beam model Damage detection |
description |
The aim of this paper is to present a method based on a 2D Hopfield Neural Network for online damage detection in beams subjected to external forces. The underlying idea of the method is that a significant change in the beam model parameters can be taken as a sign of damage occurrence in the structural system. In this way, damage detection can be associated to an identification problem. More concretely, a 2D Hopfield Neural Network uses information about the way the beam vibrates and the external forces that are applied to it to obtain time-evolving estimates of the beam parameters at the different beam points. The neural network organizes its input information based on the Euler-Bernoulli model for beam vibrations. Its performance is tested with vibration data generated by means of a different model, namely Timonshenko's, in order to produce more realistic simulation conditions. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-12-01T17:12:05Z 2015-10-01T00:00:00Z 2015-10 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/14915 |
url |
http://hdl.handle.net/10773/14915 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1573-0824 10.1007/s11045-015-0342-7 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137554454282240 |