Fitting mixtures of linear regressions

Detalhes bibliográficos
Autor(a) principal: Faria, Susana
Data de Publicação: 2010
Outros Autores: Soromenho, Gilda
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10451/4682
Resumo: In most applications, the parameters of a mixture of linear regression models are estimated by maximum likelihood using the expectation maximization (EM) algorithm. In this article, we propose the comparison of three algorithms to compute maximum likelihood estimates of the parameters of these models: the EM algorithm, the classification EM algorithm and the stochastic EM algorithm. The comparison of the three procedures was done through a simulation study of the performance (computational effort, statistical properties of estimators and goodness of fit) of these approaches on simulated data sets. Simulation results show that the choice of the approach depends essentially on the configuration of the true regression lines and the initialization of the algorithms.
id RCAP_3421975b8622aff8dcda49c8c133fcaf
oai_identifier_str oai:repositorio.ul.pt:10451/4682
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Fitting mixtures of linear regressionsMixture of linear regressionsClassification EM algorithmIn most applications, the parameters of a mixture of linear regression models are estimated by maximum likelihood using the expectation maximization (EM) algorithm. In this article, we propose the comparison of three algorithms to compute maximum likelihood estimates of the parameters of these models: the EM algorithm, the classification EM algorithm and the stochastic EM algorithm. The comparison of the three procedures was done through a simulation study of the performance (computational effort, statistical properties of estimators and goodness of fit) of these approaches on simulated data sets. Simulation results show that the choice of the approach depends essentially on the configuration of the true regression lines and the initialization of the algorithms.Taylor & FrancisRepositório da Universidade de LisboaFaria, SusanaSoromenho, Gilda2011-12-21T11:26:43Z2010-022010-02-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10451/4682engJournal of Statistical Computation and Simulation, Vol. 80, No. 2, February 2010, 201–2251563-5163info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-08T15:45:23Zoai:repositorio.ul.pt:10451/4682Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:30:03.428514Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Fitting mixtures of linear regressions
title Fitting mixtures of linear regressions
spellingShingle Fitting mixtures of linear regressions
Faria, Susana
Mixture of linear regressions
Classification EM algorithm
title_short Fitting mixtures of linear regressions
title_full Fitting mixtures of linear regressions
title_fullStr Fitting mixtures of linear regressions
title_full_unstemmed Fitting mixtures of linear regressions
title_sort Fitting mixtures of linear regressions
author Faria, Susana
author_facet Faria, Susana
Soromenho, Gilda
author_role author
author2 Soromenho, Gilda
author2_role author
dc.contributor.none.fl_str_mv Repositório da Universidade de Lisboa
dc.contributor.author.fl_str_mv Faria, Susana
Soromenho, Gilda
dc.subject.por.fl_str_mv Mixture of linear regressions
Classification EM algorithm
topic Mixture of linear regressions
Classification EM algorithm
description In most applications, the parameters of a mixture of linear regression models are estimated by maximum likelihood using the expectation maximization (EM) algorithm. In this article, we propose the comparison of three algorithms to compute maximum likelihood estimates of the parameters of these models: the EM algorithm, the classification EM algorithm and the stochastic EM algorithm. The comparison of the three procedures was done through a simulation study of the performance (computational effort, statistical properties of estimators and goodness of fit) of these approaches on simulated data sets. Simulation results show that the choice of the approach depends essentially on the configuration of the true regression lines and the initialization of the algorithms.
publishDate 2010
dc.date.none.fl_str_mv 2010-02
2010-02-01T00:00:00Z
2011-12-21T11:26:43Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10451/4682
url http://hdl.handle.net/10451/4682
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Journal of Statistical Computation and Simulation, Vol. 80, No. 2, February 2010, 201–225
1563-5163
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Taylor & Francis
publisher.none.fl_str_mv Taylor & Francis
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799134187122327552