Fitting mixtures of linear regressions
Autor(a) principal: | |
---|---|
Data de Publicação: | 2010 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10451/4682 |
Resumo: | In most applications, the parameters of a mixture of linear regression models are estimated by maximum likelihood using the expectation maximization (EM) algorithm. In this article, we propose the comparison of three algorithms to compute maximum likelihood estimates of the parameters of these models: the EM algorithm, the classification EM algorithm and the stochastic EM algorithm. The comparison of the three procedures was done through a simulation study of the performance (computational effort, statistical properties of estimators and goodness of fit) of these approaches on simulated data sets. Simulation results show that the choice of the approach depends essentially on the configuration of the true regression lines and the initialization of the algorithms. |
id |
RCAP_3421975b8622aff8dcda49c8c133fcaf |
---|---|
oai_identifier_str |
oai:repositorio.ul.pt:10451/4682 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Fitting mixtures of linear regressionsMixture of linear regressionsClassification EM algorithmIn most applications, the parameters of a mixture of linear regression models are estimated by maximum likelihood using the expectation maximization (EM) algorithm. In this article, we propose the comparison of three algorithms to compute maximum likelihood estimates of the parameters of these models: the EM algorithm, the classification EM algorithm and the stochastic EM algorithm. The comparison of the three procedures was done through a simulation study of the performance (computational effort, statistical properties of estimators and goodness of fit) of these approaches on simulated data sets. Simulation results show that the choice of the approach depends essentially on the configuration of the true regression lines and the initialization of the algorithms.Taylor & FrancisRepositório da Universidade de LisboaFaria, SusanaSoromenho, Gilda2011-12-21T11:26:43Z2010-022010-02-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10451/4682engJournal of Statistical Computation and Simulation, Vol. 80, No. 2, February 2010, 201–2251563-5163info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-08T15:45:23Zoai:repositorio.ul.pt:10451/4682Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:30:03.428514Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Fitting mixtures of linear regressions |
title |
Fitting mixtures of linear regressions |
spellingShingle |
Fitting mixtures of linear regressions Faria, Susana Mixture of linear regressions Classification EM algorithm |
title_short |
Fitting mixtures of linear regressions |
title_full |
Fitting mixtures of linear regressions |
title_fullStr |
Fitting mixtures of linear regressions |
title_full_unstemmed |
Fitting mixtures of linear regressions |
title_sort |
Fitting mixtures of linear regressions |
author |
Faria, Susana |
author_facet |
Faria, Susana Soromenho, Gilda |
author_role |
author |
author2 |
Soromenho, Gilda |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Repositório da Universidade de Lisboa |
dc.contributor.author.fl_str_mv |
Faria, Susana Soromenho, Gilda |
dc.subject.por.fl_str_mv |
Mixture of linear regressions Classification EM algorithm |
topic |
Mixture of linear regressions Classification EM algorithm |
description |
In most applications, the parameters of a mixture of linear regression models are estimated by maximum likelihood using the expectation maximization (EM) algorithm. In this article, we propose the comparison of three algorithms to compute maximum likelihood estimates of the parameters of these models: the EM algorithm, the classification EM algorithm and the stochastic EM algorithm. The comparison of the three procedures was done through a simulation study of the performance (computational effort, statistical properties of estimators and goodness of fit) of these approaches on simulated data sets. Simulation results show that the choice of the approach depends essentially on the configuration of the true regression lines and the initialization of the algorithms. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-02 2010-02-01T00:00:00Z 2011-12-21T11:26:43Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10451/4682 |
url |
http://hdl.handle.net/10451/4682 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Journal of Statistical Computation and Simulation, Vol. 80, No. 2, February 2010, 201–225 1563-5163 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Taylor & Francis |
publisher.none.fl_str_mv |
Taylor & Francis |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799134187122327552 |