Learning from past out-of-sample errors : an application of the Galton method in the United Kingdom stock market

Detalhes bibliográficos
Autor(a) principal: Celardo, Gennaro
Data de Publicação: 2023
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.14/42647
Resumo: This Thesis is focused on an out-of-sample application of the Galton strategy in the United Kingdom stock market from January 1996 to December 2022. This allocation, exploiting the lack of perfect randomness of past out-of-sample errors, is able to provide a useful alternative to the classical plug-in approach in portfolio optimization. A crucial advantage of this investment strategy is the better risk-adjusted performance with respect to the benchmark and a classic version of Mean-Variance portfolio in terms of a higher Sharpe and Sortino ratio. Galton risk estimates are not too optimistic in predicting future volatility as opposed to competitors, recording a ratio of realized volatility over its ex-ante expectation close to unity. Five hundred random horse races confirm these results. In this context, the Ledoit and Wolf portfolio is the sole competitor beating in 26% and 61% of cases the Galton GMV and MV versions in terms of annualized Sharpe ratio. From a Risk Management perspective, Galton allocations have the best VaR hit rates at 95% and 99% confidence levels
id RCAP_3487b334d0f5f5fe7fd17f6ff0114d94
oai_identifier_str oai:repositorio.ucp.pt:10400.14/42647
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Learning from past out-of-sample errors : an application of the Galton method in the United Kingdom stock marketPortfolio optimizationEstimation errorsGalton strategyShrinkage estimatorOtimização de portefólioErros de estimativaEstratégia de GaltonEstimador de contraçãoDomínio/Área Científica::Ciências Sociais::Economia e GestãoThis Thesis is focused on an out-of-sample application of the Galton strategy in the United Kingdom stock market from January 1996 to December 2022. This allocation, exploiting the lack of perfect randomness of past out-of-sample errors, is able to provide a useful alternative to the classical plug-in approach in portfolio optimization. A crucial advantage of this investment strategy is the better risk-adjusted performance with respect to the benchmark and a classic version of Mean-Variance portfolio in terms of a higher Sharpe and Sortino ratio. Galton risk estimates are not too optimistic in predicting future volatility as opposed to competitors, recording a ratio of realized volatility over its ex-ante expectation close to unity. Five hundred random horse races confirm these results. In this context, the Ledoit and Wolf portfolio is the sole competitor beating in 26% and 61% of cases the Galton GMV and MV versions in terms of annualized Sharpe ratio. From a Risk Management perspective, Galton allocations have the best VaR hit rates at 95% and 99% confidence levelsA tese está focada numa implementação out-of-sample da estratégia de Galton no mercado de ações do Reino Unido desde Janeiro 1996 até Dezembro 2022. Esta optimização de carteiras, que explora presença de previsibilidade dos erros out-of-sample do passado, é capaz de dar uma alternativa útil para a otimização de portfólios clássica. Uma vantagem crucial dessa estratégia de investimento é o melhor desempenho ajustado ao risco comparando com a benchmark e a uma versão clássica do portefólio média-variância em termos dos índices de Sharpe e Sortino mais elevados. As estimativas do risco de Galton não são excessivamente otimistas para prever a futura volatilidade em relação à competição, tendo um rácio de volatilidade realizada sobre a expectativa ex-ante abaixo da unidade. Quinhentas corridas de cavalo aleatórias confirmam estes resultados. Neste contexto, o portefólio de Ledoit e Wolf é o único concorrente batendo em 26% e 61% dos casos as versões Galton GMV e MV em termos de Sharpe ratio anualizado. De uma perspectiva de gestão de risco, as alocações de Galton têm o melhor VaR a níveis de confiança de 95% e 99%.Barroso, Pedro Monteiro e SilvaVeritati - Repositório Institucional da Universidade Católica PortuguesaCelardo, Gennaro2023-06-282023-062024-05-31T00:00:00Z2023-06-28T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.14/42647TID:203327411enginfo:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-10-03T01:43:17Zoai:repositorio.ucp.pt:10400.14/42647Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:31:56.698098Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Learning from past out-of-sample errors : an application of the Galton method in the United Kingdom stock market
title Learning from past out-of-sample errors : an application of the Galton method in the United Kingdom stock market
spellingShingle Learning from past out-of-sample errors : an application of the Galton method in the United Kingdom stock market
Celardo, Gennaro
Portfolio optimization
Estimation errors
Galton strategy
Shrinkage estimator
Otimização de portefólio
Erros de estimativa
Estratégia de Galton
Estimador de contração
Domínio/Área Científica::Ciências Sociais::Economia e Gestão
title_short Learning from past out-of-sample errors : an application of the Galton method in the United Kingdom stock market
title_full Learning from past out-of-sample errors : an application of the Galton method in the United Kingdom stock market
title_fullStr Learning from past out-of-sample errors : an application of the Galton method in the United Kingdom stock market
title_full_unstemmed Learning from past out-of-sample errors : an application of the Galton method in the United Kingdom stock market
title_sort Learning from past out-of-sample errors : an application of the Galton method in the United Kingdom stock market
author Celardo, Gennaro
author_facet Celardo, Gennaro
author_role author
dc.contributor.none.fl_str_mv Barroso, Pedro Monteiro e Silva
Veritati - Repositório Institucional da Universidade Católica Portuguesa
dc.contributor.author.fl_str_mv Celardo, Gennaro
dc.subject.por.fl_str_mv Portfolio optimization
Estimation errors
Galton strategy
Shrinkage estimator
Otimização de portefólio
Erros de estimativa
Estratégia de Galton
Estimador de contração
Domínio/Área Científica::Ciências Sociais::Economia e Gestão
topic Portfolio optimization
Estimation errors
Galton strategy
Shrinkage estimator
Otimização de portefólio
Erros de estimativa
Estratégia de Galton
Estimador de contração
Domínio/Área Científica::Ciências Sociais::Economia e Gestão
description This Thesis is focused on an out-of-sample application of the Galton strategy in the United Kingdom stock market from January 1996 to December 2022. This allocation, exploiting the lack of perfect randomness of past out-of-sample errors, is able to provide a useful alternative to the classical plug-in approach in portfolio optimization. A crucial advantage of this investment strategy is the better risk-adjusted performance with respect to the benchmark and a classic version of Mean-Variance portfolio in terms of a higher Sharpe and Sortino ratio. Galton risk estimates are not too optimistic in predicting future volatility as opposed to competitors, recording a ratio of realized volatility over its ex-ante expectation close to unity. Five hundred random horse races confirm these results. In this context, the Ledoit and Wolf portfolio is the sole competitor beating in 26% and 61% of cases the Galton GMV and MV versions in terms of annualized Sharpe ratio. From a Risk Management perspective, Galton allocations have the best VaR hit rates at 95% and 99% confidence levels
publishDate 2023
dc.date.none.fl_str_mv 2023-06-28
2023-06
2023-06-28T00:00:00Z
2024-05-31T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.14/42647
TID:203327411
url http://hdl.handle.net/10400.14/42647
identifier_str_mv TID:203327411
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133587461636096