Learning from past out-of-sample errors : an application of the Galton method in the United Kingdom stock market
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.14/42647 |
Resumo: | This Thesis is focused on an out-of-sample application of the Galton strategy in the United Kingdom stock market from January 1996 to December 2022. This allocation, exploiting the lack of perfect randomness of past out-of-sample errors, is able to provide a useful alternative to the classical plug-in approach in portfolio optimization. A crucial advantage of this investment strategy is the better risk-adjusted performance with respect to the benchmark and a classic version of Mean-Variance portfolio in terms of a higher Sharpe and Sortino ratio. Galton risk estimates are not too optimistic in predicting future volatility as opposed to competitors, recording a ratio of realized volatility over its ex-ante expectation close to unity. Five hundred random horse races confirm these results. In this context, the Ledoit and Wolf portfolio is the sole competitor beating in 26% and 61% of cases the Galton GMV and MV versions in terms of annualized Sharpe ratio. From a Risk Management perspective, Galton allocations have the best VaR hit rates at 95% and 99% confidence levels |
id |
RCAP_3487b334d0f5f5fe7fd17f6ff0114d94 |
---|---|
oai_identifier_str |
oai:repositorio.ucp.pt:10400.14/42647 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Learning from past out-of-sample errors : an application of the Galton method in the United Kingdom stock marketPortfolio optimizationEstimation errorsGalton strategyShrinkage estimatorOtimização de portefólioErros de estimativaEstratégia de GaltonEstimador de contraçãoDomínio/Área Científica::Ciências Sociais::Economia e GestãoThis Thesis is focused on an out-of-sample application of the Galton strategy in the United Kingdom stock market from January 1996 to December 2022. This allocation, exploiting the lack of perfect randomness of past out-of-sample errors, is able to provide a useful alternative to the classical plug-in approach in portfolio optimization. A crucial advantage of this investment strategy is the better risk-adjusted performance with respect to the benchmark and a classic version of Mean-Variance portfolio in terms of a higher Sharpe and Sortino ratio. Galton risk estimates are not too optimistic in predicting future volatility as opposed to competitors, recording a ratio of realized volatility over its ex-ante expectation close to unity. Five hundred random horse races confirm these results. In this context, the Ledoit and Wolf portfolio is the sole competitor beating in 26% and 61% of cases the Galton GMV and MV versions in terms of annualized Sharpe ratio. From a Risk Management perspective, Galton allocations have the best VaR hit rates at 95% and 99% confidence levelsA tese está focada numa implementação out-of-sample da estratégia de Galton no mercado de ações do Reino Unido desde Janeiro 1996 até Dezembro 2022. Esta optimização de carteiras, que explora presença de previsibilidade dos erros out-of-sample do passado, é capaz de dar uma alternativa útil para a otimização de portfólios clássica. Uma vantagem crucial dessa estratégia de investimento é o melhor desempenho ajustado ao risco comparando com a benchmark e a uma versão clássica do portefólio média-variância em termos dos índices de Sharpe e Sortino mais elevados. As estimativas do risco de Galton não são excessivamente otimistas para prever a futura volatilidade em relação à competição, tendo um rácio de volatilidade realizada sobre a expectativa ex-ante abaixo da unidade. Quinhentas corridas de cavalo aleatórias confirmam estes resultados. Neste contexto, o portefólio de Ledoit e Wolf é o único concorrente batendo em 26% e 61% dos casos as versões Galton GMV e MV em termos de Sharpe ratio anualizado. De uma perspectiva de gestão de risco, as alocações de Galton têm o melhor VaR a níveis de confiança de 95% e 99%.Barroso, Pedro Monteiro e SilvaVeritati - Repositório Institucional da Universidade Católica PortuguesaCelardo, Gennaro2023-06-282023-062024-05-31T00:00:00Z2023-06-28T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.14/42647TID:203327411enginfo:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-10-03T01:43:17Zoai:repositorio.ucp.pt:10400.14/42647Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:31:56.698098Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Learning from past out-of-sample errors : an application of the Galton method in the United Kingdom stock market |
title |
Learning from past out-of-sample errors : an application of the Galton method in the United Kingdom stock market |
spellingShingle |
Learning from past out-of-sample errors : an application of the Galton method in the United Kingdom stock market Celardo, Gennaro Portfolio optimization Estimation errors Galton strategy Shrinkage estimator Otimização de portefólio Erros de estimativa Estratégia de Galton Estimador de contração Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
title_short |
Learning from past out-of-sample errors : an application of the Galton method in the United Kingdom stock market |
title_full |
Learning from past out-of-sample errors : an application of the Galton method in the United Kingdom stock market |
title_fullStr |
Learning from past out-of-sample errors : an application of the Galton method in the United Kingdom stock market |
title_full_unstemmed |
Learning from past out-of-sample errors : an application of the Galton method in the United Kingdom stock market |
title_sort |
Learning from past out-of-sample errors : an application of the Galton method in the United Kingdom stock market |
author |
Celardo, Gennaro |
author_facet |
Celardo, Gennaro |
author_role |
author |
dc.contributor.none.fl_str_mv |
Barroso, Pedro Monteiro e Silva Veritati - Repositório Institucional da Universidade Católica Portuguesa |
dc.contributor.author.fl_str_mv |
Celardo, Gennaro |
dc.subject.por.fl_str_mv |
Portfolio optimization Estimation errors Galton strategy Shrinkage estimator Otimização de portefólio Erros de estimativa Estratégia de Galton Estimador de contração Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
topic |
Portfolio optimization Estimation errors Galton strategy Shrinkage estimator Otimização de portefólio Erros de estimativa Estratégia de Galton Estimador de contração Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
description |
This Thesis is focused on an out-of-sample application of the Galton strategy in the United Kingdom stock market from January 1996 to December 2022. This allocation, exploiting the lack of perfect randomness of past out-of-sample errors, is able to provide a useful alternative to the classical plug-in approach in portfolio optimization. A crucial advantage of this investment strategy is the better risk-adjusted performance with respect to the benchmark and a classic version of Mean-Variance portfolio in terms of a higher Sharpe and Sortino ratio. Galton risk estimates are not too optimistic in predicting future volatility as opposed to competitors, recording a ratio of realized volatility over its ex-ante expectation close to unity. Five hundred random horse races confirm these results. In this context, the Ledoit and Wolf portfolio is the sole competitor beating in 26% and 61% of cases the Galton GMV and MV versions in terms of annualized Sharpe ratio. From a Risk Management perspective, Galton allocations have the best VaR hit rates at 95% and 99% confidence levels |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-06-28 2023-06 2023-06-28T00:00:00Z 2024-05-31T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.14/42647 TID:203327411 |
url |
http://hdl.handle.net/10400.14/42647 |
identifier_str_mv |
TID:203327411 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
eu_rights_str_mv |
embargoedAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133587461636096 |