Portfolio rule‐based clustering at automobile insurance in Portugal
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/19788 |
Resumo: | Internship Report presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics |
id |
RCAP_35148212485d16f4ca3965aba02bc2f2 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/19788 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Portfolio rule‐based clustering at automobile insurance in PortugalAutomobile insuranceRule‐based clusteringK‐meansClusteringClassificationDecision treeInternship Report presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced AnalyticsDefining pricing strategy is a challenge for every insurance company. Competition makes insurers need to be more careful to adjust the premium since it may affect the reaction of the existing customer or the new ones. Correspondingly, it may impact the relationship with customer, also the profitability of the company. Moreover, the increment of number of policies will lead to the diversity of policy’s risk profile and characteristics which becomes a challenge for insurer to manage their portfolio. Therefore, a deep understanding of portfolio segmentation is important for the company to fine tune the pricing strategy and gain more profit. The project aims to discover portfolio clusters by using k‐means clustering algorithm and extract the rules of each cluster by developing classification model using Decision Tree algorithm. The result of the model shows that the clusters give different characteristics and behavior. Complement with KPI metrics, the company is able to monitor the performance of each clusters. So that, the company may use the analyses to optimize the strategy of growth and profitability.Henriques, Roberto André PereiraRUNDevi, Octaviani2017-01-16T14:36:28Z2016-07-012016-07-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/19788TID:201284910enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T04:01:59Zoai:run.unl.pt:10362/19788Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:25:41.796852Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Portfolio rule‐based clustering at automobile insurance in Portugal |
title |
Portfolio rule‐based clustering at automobile insurance in Portugal |
spellingShingle |
Portfolio rule‐based clustering at automobile insurance in Portugal Devi, Octaviani Automobile insurance Rule‐based clustering K‐means Clustering Classification Decision tree |
title_short |
Portfolio rule‐based clustering at automobile insurance in Portugal |
title_full |
Portfolio rule‐based clustering at automobile insurance in Portugal |
title_fullStr |
Portfolio rule‐based clustering at automobile insurance in Portugal |
title_full_unstemmed |
Portfolio rule‐based clustering at automobile insurance in Portugal |
title_sort |
Portfolio rule‐based clustering at automobile insurance in Portugal |
author |
Devi, Octaviani |
author_facet |
Devi, Octaviani |
author_role |
author |
dc.contributor.none.fl_str_mv |
Henriques, Roberto André Pereira RUN |
dc.contributor.author.fl_str_mv |
Devi, Octaviani |
dc.subject.por.fl_str_mv |
Automobile insurance Rule‐based clustering K‐means Clustering Classification Decision tree |
topic |
Automobile insurance Rule‐based clustering K‐means Clustering Classification Decision tree |
description |
Internship Report presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-07-01 2016-07-01T00:00:00Z 2017-01-16T14:36:28Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/19788 TID:201284910 |
url |
http://hdl.handle.net/10362/19788 |
identifier_str_mv |
TID:201284910 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137888046153728 |