IDENTIFYING POTENTIAL REGIONS FOR A PRECIPITATION INDEX INSURANCE PRODUCT IN PARANÁ – BRAZIL: A HIERARCHICAL CLUSTERING APPROACH
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Revista Brasileira de Climatologia (Online) |
Texto Completo: | https://revistas.ufpr.br/revistaabclima/article/view/72615 |
Resumo: | In this article the availability and quality of public databases for soybean yields and daily rainfall in the state of Paraná in Brazil is assessed in order to verify the feasibility of an index insurance product. The multiple imputation by chained equations (MICE) method is utilized to fill missing values in the rainfall dataset and study the existence of spatial and temporal patterns in the data by means of hierarchical clustering. The results indicate that Paraná fulfills data requirements for a scalable weather index insurance with MICE and hierarchical clustering being effective tools in the pre-processing of precipitation data. |
id |
ABCLIMA-1_9bcd53be9d8a3770abe7bff3fdc00bed |
---|---|
oai_identifier_str |
oai:revistas.ufpr.br:article/72615 |
network_acronym_str |
ABCLIMA-1 |
network_name_str |
Revista Brasileira de Climatologia (Online) |
repository_id_str |
|
spelling |
IDENTIFYING POTENTIAL REGIONS FOR A PRECIPITATION INDEX INSURANCE PRODUCT IN PARANÁ – BRAZIL: A HIERARCHICAL CLUSTERING APPROACHIndex-insurance; Hierarchical clustering; MICEIn this article the availability and quality of public databases for soybean yields and daily rainfall in the state of Paraná in Brazil is assessed in order to verify the feasibility of an index insurance product. The multiple imputation by chained equations (MICE) method is utilized to fill missing values in the rainfall dataset and study the existence of spatial and temporal patterns in the data by means of hierarchical clustering. The results indicate that Paraná fulfills data requirements for a scalable weather index insurance with MICE and hierarchical clustering being effective tools in the pre-processing of precipitation data.Universidade Federal do ParanáCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Lima Miquelluti, DanielOzaki, Vitor Augusto2021-10-13info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistas.ufpr.br/revistaabclima/article/view/7261510.5380/rbclima.v29i0.72615Revista Brasileira de Climatologia; v. 29 (2021)2237-86421980-055X10.5380/rbclima.v29i0reponame:Revista Brasileira de Climatologia (Online)instname:ABClimainstacron:ABCLIMAenghttps://revistas.ufpr.br/revistaabclima/article/view/72615/44935Paraná; BrazilDireitos autorais 2021 Daniel Lima Miquelluti, Vitor Augusto Ozakiinfo:eu-repo/semantics/openAccess2021-10-13T12:20:20Zoai:revistas.ufpr.br:article/72615Revistahttps://revistas.ufpr.br/revistaabclima/indexPUBhttps://revistas.ufpr.br/revistaabclima/oaiegalvani@usp.br || rbclima2014@gmail.com2237-86421980-055Xopendoar:2021-10-13T12:20:20Revista Brasileira de Climatologia (Online) - ABClimafalse |
dc.title.none.fl_str_mv |
IDENTIFYING POTENTIAL REGIONS FOR A PRECIPITATION INDEX INSURANCE PRODUCT IN PARANÁ – BRAZIL: A HIERARCHICAL CLUSTERING APPROACH |
title |
IDENTIFYING POTENTIAL REGIONS FOR A PRECIPITATION INDEX INSURANCE PRODUCT IN PARANÁ – BRAZIL: A HIERARCHICAL CLUSTERING APPROACH |
spellingShingle |
IDENTIFYING POTENTIAL REGIONS FOR A PRECIPITATION INDEX INSURANCE PRODUCT IN PARANÁ – BRAZIL: A HIERARCHICAL CLUSTERING APPROACH Lima Miquelluti, Daniel Index-insurance; Hierarchical clustering; MICE |
title_short |
IDENTIFYING POTENTIAL REGIONS FOR A PRECIPITATION INDEX INSURANCE PRODUCT IN PARANÁ – BRAZIL: A HIERARCHICAL CLUSTERING APPROACH |
title_full |
IDENTIFYING POTENTIAL REGIONS FOR A PRECIPITATION INDEX INSURANCE PRODUCT IN PARANÁ – BRAZIL: A HIERARCHICAL CLUSTERING APPROACH |
title_fullStr |
IDENTIFYING POTENTIAL REGIONS FOR A PRECIPITATION INDEX INSURANCE PRODUCT IN PARANÁ – BRAZIL: A HIERARCHICAL CLUSTERING APPROACH |
title_full_unstemmed |
IDENTIFYING POTENTIAL REGIONS FOR A PRECIPITATION INDEX INSURANCE PRODUCT IN PARANÁ – BRAZIL: A HIERARCHICAL CLUSTERING APPROACH |
title_sort |
IDENTIFYING POTENTIAL REGIONS FOR A PRECIPITATION INDEX INSURANCE PRODUCT IN PARANÁ – BRAZIL: A HIERARCHICAL CLUSTERING APPROACH |
author |
Lima Miquelluti, Daniel |
author_facet |
Lima Miquelluti, Daniel Ozaki, Vitor Augusto |
author_role |
author |
author2 |
Ozaki, Vitor Augusto |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) |
dc.contributor.author.fl_str_mv |
Lima Miquelluti, Daniel Ozaki, Vitor Augusto |
dc.subject.por.fl_str_mv |
Index-insurance; Hierarchical clustering; MICE |
topic |
Index-insurance; Hierarchical clustering; MICE |
description |
In this article the availability and quality of public databases for soybean yields and daily rainfall in the state of Paraná in Brazil is assessed in order to verify the feasibility of an index insurance product. The multiple imputation by chained equations (MICE) method is utilized to fill missing values in the rainfall dataset and study the existence of spatial and temporal patterns in the data by means of hierarchical clustering. The results indicate that Paraná fulfills data requirements for a scalable weather index insurance with MICE and hierarchical clustering being effective tools in the pre-processing of precipitation data. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-10-13 |
dc.type.none.fl_str_mv |
|
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://revistas.ufpr.br/revistaabclima/article/view/72615 10.5380/rbclima.v29i0.72615 |
url |
https://revistas.ufpr.br/revistaabclima/article/view/72615 |
identifier_str_mv |
10.5380/rbclima.v29i0.72615 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://revistas.ufpr.br/revistaabclima/article/view/72615/44935 |
dc.rights.driver.fl_str_mv |
Direitos autorais 2021 Daniel Lima Miquelluti, Vitor Augusto Ozaki info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Direitos autorais 2021 Daniel Lima Miquelluti, Vitor Augusto Ozaki |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
Paraná; Brazil |
dc.publisher.none.fl_str_mv |
Universidade Federal do Paraná |
publisher.none.fl_str_mv |
Universidade Federal do Paraná |
dc.source.none.fl_str_mv |
Revista Brasileira de Climatologia; v. 29 (2021) 2237-8642 1980-055X 10.5380/rbclima.v29i0 reponame:Revista Brasileira de Climatologia (Online) instname:ABClima instacron:ABCLIMA |
instname_str |
ABClima |
instacron_str |
ABCLIMA |
institution |
ABCLIMA |
reponame_str |
Revista Brasileira de Climatologia (Online) |
collection |
Revista Brasileira de Climatologia (Online) |
repository.name.fl_str_mv |
Revista Brasileira de Climatologia (Online) - ABClima |
repository.mail.fl_str_mv |
egalvani@usp.br || rbclima2014@gmail.com |
_version_ |
1754839542858252288 |