Disease mapping models for data with weak spatial dependence or spatial discontinuities
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/108167 |
Resumo: | Baptista, H., Congdon, P., Mendes, J. M., Rodrigues, A. M., Canhão, H., & Dias, S. S. (2020). Disease mapping models for data with weak spatial dependence or spatial discontinuities. Epidemiologic Methods, 9(1), [20190025]. https://doi.org/10.1515/em-2019-0025 |
id |
RCAP_36fa5b1897cab1a762f0ff4fdb4af0e4 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/108167 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Disease mapping models for data with weak spatial dependence or spatial discontinuitiesbayesian modellingbody mass index(BMI)limiting health problemssimilarity-based and adaptive modelsspatial epidemiologyEpidemiologyApplied MathematicsSDG 3 - Good Health and Well-beingBaptista, H., Congdon, P., Mendes, J. M., Rodrigues, A. M., Canhão, H., & Dias, S. S. (2020). Disease mapping models for data with weak spatial dependence or spatial discontinuities. Epidemiologic Methods, 9(1), [20190025]. https://doi.org/10.1515/em-2019-0025Recent advances in the spatial epidemiology literature have extended traditional approaches by including determinant disease factors that allow for non-local smoothing and/or non-spatial smoothing. In this article, two of those approaches are compared and are further extended to areas of high interest from the public health perspective. These are a conditionally specified Gaussian random field model, using a similarity-based non-spatial weight matrix to facilitate non-spatial smoothing in Bayesian disease mapping; and a spatially adaptive conditional autoregressive prior model. The methods are specially design to handle cases when there is no evidence of positive spatial correlation or the appropriate mix between local and global smoothing is not constant across the region being study. Both approaches proposed in this article are producing results consistent with the published knowledge, and are increasing the accuracy to clearly determine areas of high- or low-risk.Information Management Research Center (MagIC) - NOVA Information Management SchoolNOVA Information Management School (NOVA IMS)Comprehensive Health Research Centre (CHRC) - pólo NMSNOVA Medical School|Faculdade de Ciências Médicas (NMS|FCM)Centro de Estudos de Doenças Crónicas (CEDOC)RUNBaptista, HelenaCongdon, PeterMendes, Jorge M.Maria Rodrigues, AnaCanhão, HelenaDias, Sara Simões2020-12-04T00:18:50Z2020-01-012020-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article19application/pdfhttp://hdl.handle.net/10362/108167eng2194-9263PURE: 26637243https://doi.org/10.1515/em-2019-0025info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T04:52:46Zoai:run.unl.pt:10362/108167Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:41:07.985479Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Disease mapping models for data with weak spatial dependence or spatial discontinuities |
title |
Disease mapping models for data with weak spatial dependence or spatial discontinuities |
spellingShingle |
Disease mapping models for data with weak spatial dependence or spatial discontinuities Baptista, Helena bayesian modelling body mass index(BMI) limiting health problems similarity-based and adaptive models spatial epidemiology Epidemiology Applied Mathematics SDG 3 - Good Health and Well-being |
title_short |
Disease mapping models for data with weak spatial dependence or spatial discontinuities |
title_full |
Disease mapping models for data with weak spatial dependence or spatial discontinuities |
title_fullStr |
Disease mapping models for data with weak spatial dependence or spatial discontinuities |
title_full_unstemmed |
Disease mapping models for data with weak spatial dependence or spatial discontinuities |
title_sort |
Disease mapping models for data with weak spatial dependence or spatial discontinuities |
author |
Baptista, Helena |
author_facet |
Baptista, Helena Congdon, Peter Mendes, Jorge M. Maria Rodrigues, Ana Canhão, Helena Dias, Sara Simões |
author_role |
author |
author2 |
Congdon, Peter Mendes, Jorge M. Maria Rodrigues, Ana Canhão, Helena Dias, Sara Simões |
author2_role |
author author author author author |
dc.contributor.none.fl_str_mv |
Information Management Research Center (MagIC) - NOVA Information Management School NOVA Information Management School (NOVA IMS) Comprehensive Health Research Centre (CHRC) - pólo NMS NOVA Medical School|Faculdade de Ciências Médicas (NMS|FCM) Centro de Estudos de Doenças Crónicas (CEDOC) RUN |
dc.contributor.author.fl_str_mv |
Baptista, Helena Congdon, Peter Mendes, Jorge M. Maria Rodrigues, Ana Canhão, Helena Dias, Sara Simões |
dc.subject.por.fl_str_mv |
bayesian modelling body mass index(BMI) limiting health problems similarity-based and adaptive models spatial epidemiology Epidemiology Applied Mathematics SDG 3 - Good Health and Well-being |
topic |
bayesian modelling body mass index(BMI) limiting health problems similarity-based and adaptive models spatial epidemiology Epidemiology Applied Mathematics SDG 3 - Good Health and Well-being |
description |
Baptista, H., Congdon, P., Mendes, J. M., Rodrigues, A. M., Canhão, H., & Dias, S. S. (2020). Disease mapping models for data with weak spatial dependence or spatial discontinuities. Epidemiologic Methods, 9(1), [20190025]. https://doi.org/10.1515/em-2019-0025 |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-12-04T00:18:50Z 2020-01-01 2020-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/108167 |
url |
http://hdl.handle.net/10362/108167 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2194-9263 PURE: 26637243 https://doi.org/10.1515/em-2019-0025 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
19 application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138024749006848 |