Fractional variational problems with the Riesz-Caputo derivative

Detalhes bibliográficos
Autor(a) principal: Almeida, R.
Data de Publicação: 2011
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/4154
Resumo: In this paper we investigate optimality conditions for fractional variational problems, with a Lagrangian depending on the Riesz-Caputo derivative. First we prove a generalized Euler-Lagrange equation for the case when the interval of integration of the functional is different from the interval of the fractional derivative. Next we consider integral dynamic constraints on the problem, for several different cases. Finally, we determine optimality conditions for functionals depending not only on the admissible functions, but on time also, and we present a necessary condition for a pair function-time to be an optimal solution to the problem. © 2011 Elsevier Ltd. All rights reserved.
id RCAP_37514f0485175bf2e52ab931ca2b888f
oai_identifier_str oai:ria.ua.pt:10773/4154
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Fractional variational problems with the Riesz-Caputo derivativeCalculus of variationsIsoperimetric problemRiesz-Caputo fractional derivativeIn this paper we investigate optimality conditions for fractional variational problems, with a Lagrangian depending on the Riesz-Caputo derivative. First we prove a generalized Euler-Lagrange equation for the case when the interval of integration of the functional is different from the interval of the fractional derivative. Next we consider integral dynamic constraints on the problem, for several different cases. Finally, we determine optimality conditions for functionals depending not only on the admissible functions, but on time also, and we present a necessary condition for a pair function-time to be an optimal solution to the problem. © 2011 Elsevier Ltd. All rights reserved.Elsevier2011-10-13T15:04:33Z2012-01-01T00:00:00Z2012info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/4154eng0893-965910.1016/j.aml.2011.08.003Almeida, R.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:04:28Zoai:ria.ua.pt:10773/4154Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:42:12.240312Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Fractional variational problems with the Riesz-Caputo derivative
title Fractional variational problems with the Riesz-Caputo derivative
spellingShingle Fractional variational problems with the Riesz-Caputo derivative
Almeida, R.
Calculus of variations
Isoperimetric problem
Riesz-Caputo fractional derivative
title_short Fractional variational problems with the Riesz-Caputo derivative
title_full Fractional variational problems with the Riesz-Caputo derivative
title_fullStr Fractional variational problems with the Riesz-Caputo derivative
title_full_unstemmed Fractional variational problems with the Riesz-Caputo derivative
title_sort Fractional variational problems with the Riesz-Caputo derivative
author Almeida, R.
author_facet Almeida, R.
author_role author
dc.contributor.author.fl_str_mv Almeida, R.
dc.subject.por.fl_str_mv Calculus of variations
Isoperimetric problem
Riesz-Caputo fractional derivative
topic Calculus of variations
Isoperimetric problem
Riesz-Caputo fractional derivative
description In this paper we investigate optimality conditions for fractional variational problems, with a Lagrangian depending on the Riesz-Caputo derivative. First we prove a generalized Euler-Lagrange equation for the case when the interval of integration of the functional is different from the interval of the fractional derivative. Next we consider integral dynamic constraints on the problem, for several different cases. Finally, we determine optimality conditions for functionals depending not only on the admissible functions, but on time also, and we present a necessary condition for a pair function-time to be an optimal solution to the problem. © 2011 Elsevier Ltd. All rights reserved.
publishDate 2011
dc.date.none.fl_str_mv 2011-10-13T15:04:33Z
2012-01-01T00:00:00Z
2012
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/4154
url http://hdl.handle.net/10773/4154
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0893-9659
10.1016/j.aml.2011.08.003
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137470810423296