Fractional variational problems with the Riesz-Caputo derivative
Autor(a) principal: | |
---|---|
Data de Publicação: | 2011 |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/4154 |
Resumo: | In this paper we investigate optimality conditions for fractional variational problems, with a Lagrangian depending on the Riesz-Caputo derivative. First we prove a generalized Euler-Lagrange equation for the case when the interval of integration of the functional is different from the interval of the fractional derivative. Next we consider integral dynamic constraints on the problem, for several different cases. Finally, we determine optimality conditions for functionals depending not only on the admissible functions, but on time also, and we present a necessary condition for a pair function-time to be an optimal solution to the problem. © 2011 Elsevier Ltd. All rights reserved. |
id |
RCAP_37514f0485175bf2e52ab931ca2b888f |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/4154 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Fractional variational problems with the Riesz-Caputo derivativeCalculus of variationsIsoperimetric problemRiesz-Caputo fractional derivativeIn this paper we investigate optimality conditions for fractional variational problems, with a Lagrangian depending on the Riesz-Caputo derivative. First we prove a generalized Euler-Lagrange equation for the case when the interval of integration of the functional is different from the interval of the fractional derivative. Next we consider integral dynamic constraints on the problem, for several different cases. Finally, we determine optimality conditions for functionals depending not only on the admissible functions, but on time also, and we present a necessary condition for a pair function-time to be an optimal solution to the problem. © 2011 Elsevier Ltd. All rights reserved.Elsevier2011-10-13T15:04:33Z2012-01-01T00:00:00Z2012info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/4154eng0893-965910.1016/j.aml.2011.08.003Almeida, R.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:04:28Zoai:ria.ua.pt:10773/4154Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:42:12.240312Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Fractional variational problems with the Riesz-Caputo derivative |
title |
Fractional variational problems with the Riesz-Caputo derivative |
spellingShingle |
Fractional variational problems with the Riesz-Caputo derivative Almeida, R. Calculus of variations Isoperimetric problem Riesz-Caputo fractional derivative |
title_short |
Fractional variational problems with the Riesz-Caputo derivative |
title_full |
Fractional variational problems with the Riesz-Caputo derivative |
title_fullStr |
Fractional variational problems with the Riesz-Caputo derivative |
title_full_unstemmed |
Fractional variational problems with the Riesz-Caputo derivative |
title_sort |
Fractional variational problems with the Riesz-Caputo derivative |
author |
Almeida, R. |
author_facet |
Almeida, R. |
author_role |
author |
dc.contributor.author.fl_str_mv |
Almeida, R. |
dc.subject.por.fl_str_mv |
Calculus of variations Isoperimetric problem Riesz-Caputo fractional derivative |
topic |
Calculus of variations Isoperimetric problem Riesz-Caputo fractional derivative |
description |
In this paper we investigate optimality conditions for fractional variational problems, with a Lagrangian depending on the Riesz-Caputo derivative. First we prove a generalized Euler-Lagrange equation for the case when the interval of integration of the functional is different from the interval of the fractional derivative. Next we consider integral dynamic constraints on the problem, for several different cases. Finally, we determine optimality conditions for functionals depending not only on the admissible functions, but on time also, and we present a necessary condition for a pair function-time to be an optimal solution to the problem. © 2011 Elsevier Ltd. All rights reserved. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-10-13T15:04:33Z 2012-01-01T00:00:00Z 2012 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/4154 |
url |
http://hdl.handle.net/10773/4154 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0893-9659 10.1016/j.aml.2011.08.003 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137470810423296 |