Variational Problems Involving a Caputo-Type Fractional Derivative

Detalhes bibliográficos
Autor(a) principal: Almeida, Ricardo
Data de Publicação: 2017
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/18433
Resumo: We study calculus of variations problems, where the Lagrange function depends on the Caputo-Katugampola fractional derivative. This type of fractional operator is a generalization of the Caputo and the Caputo–Hadamard fractional derivatives, with dependence on a real parameter ρ. We present sufficient and necessary conditions of first and second order to determine the extremizers of a functional. The cases of integral and holomonic constraints are also considered.
id RCAP_e389ef6e852ef623cc05090e04c6526e
oai_identifier_str oai:ria.ua.pt:10773/18433
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Variational Problems Involving a Caputo-Type Fractional DerivativeFractional calculusCaputo-type fractional derivativeVariational problemsWe study calculus of variations problems, where the Lagrange function depends on the Caputo-Katugampola fractional derivative. This type of fractional operator is a generalization of the Caputo and the Caputo–Hadamard fractional derivatives, with dependence on a real parameter ρ. We present sufficient and necessary conditions of first and second order to determine the extremizers of a functional. The cases of integral and holomonic constraints are also considered.Springer20172017-01-01T00:00:00Z2018-12-26T16:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/18433eng0022-323910.1007/s10957-016-0883-4Almeida, Ricardoinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:34:22Zoai:ria.ua.pt:10773/18433Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:52:55.589671Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Variational Problems Involving a Caputo-Type Fractional Derivative
title Variational Problems Involving a Caputo-Type Fractional Derivative
spellingShingle Variational Problems Involving a Caputo-Type Fractional Derivative
Almeida, Ricardo
Fractional calculus
Caputo-type fractional derivative
Variational problems
title_short Variational Problems Involving a Caputo-Type Fractional Derivative
title_full Variational Problems Involving a Caputo-Type Fractional Derivative
title_fullStr Variational Problems Involving a Caputo-Type Fractional Derivative
title_full_unstemmed Variational Problems Involving a Caputo-Type Fractional Derivative
title_sort Variational Problems Involving a Caputo-Type Fractional Derivative
author Almeida, Ricardo
author_facet Almeida, Ricardo
author_role author
dc.contributor.author.fl_str_mv Almeida, Ricardo
dc.subject.por.fl_str_mv Fractional calculus
Caputo-type fractional derivative
Variational problems
topic Fractional calculus
Caputo-type fractional derivative
Variational problems
description We study calculus of variations problems, where the Lagrange function depends on the Caputo-Katugampola fractional derivative. This type of fractional operator is a generalization of the Caputo and the Caputo–Hadamard fractional derivatives, with dependence on a real parameter ρ. We present sufficient and necessary conditions of first and second order to determine the extremizers of a functional. The cases of integral and holomonic constraints are also considered.
publishDate 2017
dc.date.none.fl_str_mv 2017
2017-01-01T00:00:00Z
2018-12-26T16:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/18433
url http://hdl.handle.net/10773/18433
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0022-3239
10.1007/s10957-016-0883-4
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137579789975552