Land cover automatic classification using deep learning techniques applied to satellite imagery

Detalhes bibliográficos
Autor(a) principal: Santos, Sérgio Filipe Paiva da Silva Gonçalves dos
Data de Publicação: 2023
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10071/31072
Resumo: In this era of population growth and rapid urbanization, effective and sustainable urban development is a very important factor. In this context, Machine Learning (ML) can play a leading role in helping with these tasks; it makes possible the treatment of remote sensing images in a shorter time frame. This thesis focuses on the development and use of Convolutional Neuronal Network (CNN)s to handle multispectral images. The principal goal is to evaluate the performance metrics and computational complexity of a CNN-based land cover classification approach. And to try and assess if the results achieved are better or worse than the architectures currently implemented by the Direção Geral do Território (DGT). In this order, it was first necessary to understand the provided data and all its inherent characteristics. This data was then preprocessed, and the architecture was defined. The results show that CNNs present a promising alternative in this context to the implemented methods for land cover classification. Despite the promise it provides, it also highlights the difficulties faced and how the work can be improved, specifically concerning the lack of labeled data. The existence of these difficulties presents opportunities for further development of this work. As an overview of this dissertation, it is possible to say that the investigation into the feasibility of using CNNs for land cover classification provided positive results. There is, however, as would be expected, room for improvement, especially in what concerns the pre-processing of data.
id RCAP_3799b3559bc191dfb04b1b6e2841f68e
oai_identifier_str oai:repositorio.iscte-iul.pt:10071/31072
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Land cover automatic classification using deep learning techniques applied to satellite imageryMultispectral imagingRede neuronal convolucional - -- Convolutional neural network (CNN or ConvNet)Machine learningLand use land cover classificationSentinel-2Imagens multispetraisClassificação da superfície terrestreIn this era of population growth and rapid urbanization, effective and sustainable urban development is a very important factor. In this context, Machine Learning (ML) can play a leading role in helping with these tasks; it makes possible the treatment of remote sensing images in a shorter time frame. This thesis focuses on the development and use of Convolutional Neuronal Network (CNN)s to handle multispectral images. The principal goal is to evaluate the performance metrics and computational complexity of a CNN-based land cover classification approach. And to try and assess if the results achieved are better or worse than the architectures currently implemented by the Direção Geral do Território (DGT). In this order, it was first necessary to understand the provided data and all its inherent characteristics. This data was then preprocessed, and the architecture was defined. The results show that CNNs present a promising alternative in this context to the implemented methods for land cover classification. Despite the promise it provides, it also highlights the difficulties faced and how the work can be improved, specifically concerning the lack of labeled data. The existence of these difficulties presents opportunities for further development of this work. As an overview of this dissertation, it is possible to say that the investigation into the feasibility of using CNNs for land cover classification provided positive results. There is, however, as would be expected, room for improvement, especially in what concerns the pre-processing of data.Nesta em que vivemos de crescimento populacional e rápida urbanização, o desenvolvimento urbano eficaz e sustentável é um fator muito importante. Neste contexto, a aprendizagem automática pode desempenhar um papel fundamental na realização destas tarefas; A utilização deste tipo de algoritmos possibilita por exemplo o tratamento de vários tipos de imagens rapidamente. Esta tese centra-se no desenvolvimento e uso de Redes Convolucionais Neuronais para lidar com imagens multiespectrais. O principal objetivo da tese é avaliar a taxa de acertos e a complexidade computacional de uma abordagem de classificação da cobertura do solo baseada em redes neuronais convolucionais. Além disto, tentar avaliar se os resultados alcançados são melhores ou piores do que as atuais soluções da DGT. Neste sentido, primeiro foi necessário compreender os dados fornecidos e todas as suas características inerentes. Esses dados foram então pré-processados, e a arquitetura definida. Os resultados mostram que as CNNs apresentam uma alternativa promissora no âmbito da classificação da cobertura do solo. Apesar da promessa que oferece, esta dissertação também destaca as dificuldades enfrentadas e como o trabalho pode ser melhorado, especificamente no que diz respeito à falta de dados etiquetados. A existência destas dificuldades oferece oportunidades para um desenvolvimento futuro deste trabalho. Em resumo, acerca desta dissertação é possível dizer que que a viabilidade da utilização de CNNs para classificação da cobertura do solo foi provada, contudo, como seria de esperar, existe ainda margem para melhorias. Estas melhorias podem recair especialmente por exemplo no contexto do pré-processamento dos dados.2024-02-19T11:05:37Z2023-11-10T00:00:00Z2023-11-102023-11info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10071/31072TID:203494229engSantos, Sérgio Filipe Paiva da Silva Gonçalves dosinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-25T01:19:05Zoai:repositorio.iscte-iul.pt:10071/31072Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:11:21.412993Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Land cover automatic classification using deep learning techniques applied to satellite imagery
title Land cover automatic classification using deep learning techniques applied to satellite imagery
spellingShingle Land cover automatic classification using deep learning techniques applied to satellite imagery
Santos, Sérgio Filipe Paiva da Silva Gonçalves dos
Multispectral imaging
Rede neuronal convolucional - -- Convolutional neural network (CNN or ConvNet)
Machine learning
Land use land cover classification
Sentinel-2
Imagens multispetrais
Classificação da superfície terrestre
title_short Land cover automatic classification using deep learning techniques applied to satellite imagery
title_full Land cover automatic classification using deep learning techniques applied to satellite imagery
title_fullStr Land cover automatic classification using deep learning techniques applied to satellite imagery
title_full_unstemmed Land cover automatic classification using deep learning techniques applied to satellite imagery
title_sort Land cover automatic classification using deep learning techniques applied to satellite imagery
author Santos, Sérgio Filipe Paiva da Silva Gonçalves dos
author_facet Santos, Sérgio Filipe Paiva da Silva Gonçalves dos
author_role author
dc.contributor.author.fl_str_mv Santos, Sérgio Filipe Paiva da Silva Gonçalves dos
dc.subject.por.fl_str_mv Multispectral imaging
Rede neuronal convolucional - -- Convolutional neural network (CNN or ConvNet)
Machine learning
Land use land cover classification
Sentinel-2
Imagens multispetrais
Classificação da superfície terrestre
topic Multispectral imaging
Rede neuronal convolucional - -- Convolutional neural network (CNN or ConvNet)
Machine learning
Land use land cover classification
Sentinel-2
Imagens multispetrais
Classificação da superfície terrestre
description In this era of population growth and rapid urbanization, effective and sustainable urban development is a very important factor. In this context, Machine Learning (ML) can play a leading role in helping with these tasks; it makes possible the treatment of remote sensing images in a shorter time frame. This thesis focuses on the development and use of Convolutional Neuronal Network (CNN)s to handle multispectral images. The principal goal is to evaluate the performance metrics and computational complexity of a CNN-based land cover classification approach. And to try and assess if the results achieved are better or worse than the architectures currently implemented by the Direção Geral do Território (DGT). In this order, it was first necessary to understand the provided data and all its inherent characteristics. This data was then preprocessed, and the architecture was defined. The results show that CNNs present a promising alternative in this context to the implemented methods for land cover classification. Despite the promise it provides, it also highlights the difficulties faced and how the work can be improved, specifically concerning the lack of labeled data. The existence of these difficulties presents opportunities for further development of this work. As an overview of this dissertation, it is possible to say that the investigation into the feasibility of using CNNs for land cover classification provided positive results. There is, however, as would be expected, room for improvement, especially in what concerns the pre-processing of data.
publishDate 2023
dc.date.none.fl_str_mv 2023-11-10T00:00:00Z
2023-11-10
2023-11
2024-02-19T11:05:37Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10071/31072
TID:203494229
url http://hdl.handle.net/10071/31072
identifier_str_mv TID:203494229
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137763415556096