Land cover automatic classification using deep learning techniques applied to satellite imagery
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10071/31072 |
Resumo: | In this era of population growth and rapid urbanization, effective and sustainable urban development is a very important factor. In this context, Machine Learning (ML) can play a leading role in helping with these tasks; it makes possible the treatment of remote sensing images in a shorter time frame. This thesis focuses on the development and use of Convolutional Neuronal Network (CNN)s to handle multispectral images. The principal goal is to evaluate the performance metrics and computational complexity of a CNN-based land cover classification approach. And to try and assess if the results achieved are better or worse than the architectures currently implemented by the Direção Geral do Território (DGT). In this order, it was first necessary to understand the provided data and all its inherent characteristics. This data was then preprocessed, and the architecture was defined. The results show that CNNs present a promising alternative in this context to the implemented methods for land cover classification. Despite the promise it provides, it also highlights the difficulties faced and how the work can be improved, specifically concerning the lack of labeled data. The existence of these difficulties presents opportunities for further development of this work. As an overview of this dissertation, it is possible to say that the investigation into the feasibility of using CNNs for land cover classification provided positive results. There is, however, as would be expected, room for improvement, especially in what concerns the pre-processing of data. |
id |
RCAP_3799b3559bc191dfb04b1b6e2841f68e |
---|---|
oai_identifier_str |
oai:repositorio.iscte-iul.pt:10071/31072 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Land cover automatic classification using deep learning techniques applied to satellite imageryMultispectral imagingRede neuronal convolucional - -- Convolutional neural network (CNN or ConvNet)Machine learningLand use land cover classificationSentinel-2Imagens multispetraisClassificação da superfície terrestreIn this era of population growth and rapid urbanization, effective and sustainable urban development is a very important factor. In this context, Machine Learning (ML) can play a leading role in helping with these tasks; it makes possible the treatment of remote sensing images in a shorter time frame. This thesis focuses on the development and use of Convolutional Neuronal Network (CNN)s to handle multispectral images. The principal goal is to evaluate the performance metrics and computational complexity of a CNN-based land cover classification approach. And to try and assess if the results achieved are better or worse than the architectures currently implemented by the Direção Geral do Território (DGT). In this order, it was first necessary to understand the provided data and all its inherent characteristics. This data was then preprocessed, and the architecture was defined. The results show that CNNs present a promising alternative in this context to the implemented methods for land cover classification. Despite the promise it provides, it also highlights the difficulties faced and how the work can be improved, specifically concerning the lack of labeled data. The existence of these difficulties presents opportunities for further development of this work. As an overview of this dissertation, it is possible to say that the investigation into the feasibility of using CNNs for land cover classification provided positive results. There is, however, as would be expected, room for improvement, especially in what concerns the pre-processing of data.Nesta em que vivemos de crescimento populacional e rápida urbanização, o desenvolvimento urbano eficaz e sustentável é um fator muito importante. Neste contexto, a aprendizagem automática pode desempenhar um papel fundamental na realização destas tarefas; A utilização deste tipo de algoritmos possibilita por exemplo o tratamento de vários tipos de imagens rapidamente. Esta tese centra-se no desenvolvimento e uso de Redes Convolucionais Neuronais para lidar com imagens multiespectrais. O principal objetivo da tese é avaliar a taxa de acertos e a complexidade computacional de uma abordagem de classificação da cobertura do solo baseada em redes neuronais convolucionais. Além disto, tentar avaliar se os resultados alcançados são melhores ou piores do que as atuais soluções da DGT. Neste sentido, primeiro foi necessário compreender os dados fornecidos e todas as suas características inerentes. Esses dados foram então pré-processados, e a arquitetura definida. Os resultados mostram que as CNNs apresentam uma alternativa promissora no âmbito da classificação da cobertura do solo. Apesar da promessa que oferece, esta dissertação também destaca as dificuldades enfrentadas e como o trabalho pode ser melhorado, especificamente no que diz respeito à falta de dados etiquetados. A existência destas dificuldades oferece oportunidades para um desenvolvimento futuro deste trabalho. Em resumo, acerca desta dissertação é possível dizer que que a viabilidade da utilização de CNNs para classificação da cobertura do solo foi provada, contudo, como seria de esperar, existe ainda margem para melhorias. Estas melhorias podem recair especialmente por exemplo no contexto do pré-processamento dos dados.2024-02-19T11:05:37Z2023-11-10T00:00:00Z2023-11-102023-11info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10071/31072TID:203494229engSantos, Sérgio Filipe Paiva da Silva Gonçalves dosinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-25T01:19:05Zoai:repositorio.iscte-iul.pt:10071/31072Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:11:21.412993Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Land cover automatic classification using deep learning techniques applied to satellite imagery |
title |
Land cover automatic classification using deep learning techniques applied to satellite imagery |
spellingShingle |
Land cover automatic classification using deep learning techniques applied to satellite imagery Santos, Sérgio Filipe Paiva da Silva Gonçalves dos Multispectral imaging Rede neuronal convolucional - -- Convolutional neural network (CNN or ConvNet) Machine learning Land use land cover classification Sentinel-2 Imagens multispetrais Classificação da superfície terrestre |
title_short |
Land cover automatic classification using deep learning techniques applied to satellite imagery |
title_full |
Land cover automatic classification using deep learning techniques applied to satellite imagery |
title_fullStr |
Land cover automatic classification using deep learning techniques applied to satellite imagery |
title_full_unstemmed |
Land cover automatic classification using deep learning techniques applied to satellite imagery |
title_sort |
Land cover automatic classification using deep learning techniques applied to satellite imagery |
author |
Santos, Sérgio Filipe Paiva da Silva Gonçalves dos |
author_facet |
Santos, Sérgio Filipe Paiva da Silva Gonçalves dos |
author_role |
author |
dc.contributor.author.fl_str_mv |
Santos, Sérgio Filipe Paiva da Silva Gonçalves dos |
dc.subject.por.fl_str_mv |
Multispectral imaging Rede neuronal convolucional - -- Convolutional neural network (CNN or ConvNet) Machine learning Land use land cover classification Sentinel-2 Imagens multispetrais Classificação da superfície terrestre |
topic |
Multispectral imaging Rede neuronal convolucional - -- Convolutional neural network (CNN or ConvNet) Machine learning Land use land cover classification Sentinel-2 Imagens multispetrais Classificação da superfície terrestre |
description |
In this era of population growth and rapid urbanization, effective and sustainable urban development is a very important factor. In this context, Machine Learning (ML) can play a leading role in helping with these tasks; it makes possible the treatment of remote sensing images in a shorter time frame. This thesis focuses on the development and use of Convolutional Neuronal Network (CNN)s to handle multispectral images. The principal goal is to evaluate the performance metrics and computational complexity of a CNN-based land cover classification approach. And to try and assess if the results achieved are better or worse than the architectures currently implemented by the Direção Geral do Território (DGT). In this order, it was first necessary to understand the provided data and all its inherent characteristics. This data was then preprocessed, and the architecture was defined. The results show that CNNs present a promising alternative in this context to the implemented methods for land cover classification. Despite the promise it provides, it also highlights the difficulties faced and how the work can be improved, specifically concerning the lack of labeled data. The existence of these difficulties presents opportunities for further development of this work. As an overview of this dissertation, it is possible to say that the investigation into the feasibility of using CNNs for land cover classification provided positive results. There is, however, as would be expected, room for improvement, especially in what concerns the pre-processing of data. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-11-10T00:00:00Z 2023-11-10 2023-11 2024-02-19T11:05:37Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10071/31072 TID:203494229 |
url |
http://hdl.handle.net/10071/31072 |
identifier_str_mv |
TID:203494229 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137763415556096 |