Advanced Genetic Programming vs. State-of-the-Art AutoML in Imbalanced Binary Classification
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/155832 |
Resumo: | Frank, F., & Bacao, F. (2023). Advanced Genetic Programming vs. State-of-the-Art AutoML in Imbalanced Binary Classification. Emerging Science Journal, 7(4), 1349-1363. https://doi.org/10.28991/ESJ-2023-07-04-021--- Data Availability Statement: Publicly available datasets were analyzed in this study. This data can be found here: https://github.com/joaopfonseca/mlresearch. ---This work was supported by a grant of the Portuguese Foundation for Science and Technology (“Fundação para a Ciência e a Tecnologia”), DSAIPA/DS/0116/2019, and project UIDB/04152/2020—Centro de Investigação em Gestão de Informação (MagIC) |
id |
RCAP_380ec22ab9fc1fca48cb1c1ad165108d |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/155832 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Advanced Genetic Programming vs. State-of-the-Art AutoML in Imbalanced Binary ClassificationGenetic ProgrammingAutomated Machine LearningAutoMLImbalanced Binary ClassificationGeneralFrank, F., & Bacao, F. (2023). Advanced Genetic Programming vs. State-of-the-Art AutoML in Imbalanced Binary Classification. Emerging Science Journal, 7(4), 1349-1363. https://doi.org/10.28991/ESJ-2023-07-04-021--- Data Availability Statement: Publicly available datasets were analyzed in this study. This data can be found here: https://github.com/joaopfonseca/mlresearch. ---This work was supported by a grant of the Portuguese Foundation for Science and Technology (“Fundação para a Ciência e a Tecnologia”), DSAIPA/DS/0116/2019, and project UIDB/04152/2020—Centro de Investigação em Gestão de Informação (MagIC)The objective of this article is to provide a comparative analysis of two novel genetic programming (GP) techniques, differentiable Cartesian genetic programming for artificial neural networks (DCGPANN) and geometric semantic genetic programming (GSGP), with state-of-the-art automated machine learning (AutoML) tools, namely Auto-Keras, Auto-PyTorch and Auto-Sklearn. While all these techniques are compared to several baseline algorithms upon their introduction, research still lacks direct comparisons between them, especially of the GP approaches with state-of-the-art AutoML. This study intends to fill this gap in order to analyze the true potential of GP for AutoML. The performances of the different tools are assessed by applying them to 20 benchmark datasets of the imbalanced binary classification field, thus an area that is a frequent and challenging problem. The tools are compared across the four categories average performance, maximum performance, standard deviation within performance, and generalization ability, whereby the metrics F1-score, G-mean, and AUC are used for evaluation. The analysis finds that the GP techniques, while unable to completely outperform state-of-the-art AutoML, are indeed already a very competitive alternative. Therefore, these advanced GP tools prove that they are able to provide a new and promising approach for practitioners developing machine learning (ML) models.NOVA Information Management School (NOVA IMS)Information Management Research Center (MagIC) - NOVA Information Management SchoolRUNFrank, FranzBacao, Fernando2023-07-25T22:15:26Z2023-08-012023-08-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article15application/pdfhttp://hdl.handle.net/10362/155832eng2610-9182PURE: 67340501https://doi.org/10.28991/ESJ-2023-07-04-021info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:38:25Zoai:run.unl.pt:10362/155832Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:56:13.899332Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Advanced Genetic Programming vs. State-of-the-Art AutoML in Imbalanced Binary Classification |
title |
Advanced Genetic Programming vs. State-of-the-Art AutoML in Imbalanced Binary Classification |
spellingShingle |
Advanced Genetic Programming vs. State-of-the-Art AutoML in Imbalanced Binary Classification Frank, Franz Genetic Programming Automated Machine Learning AutoML Imbalanced Binary Classification General |
title_short |
Advanced Genetic Programming vs. State-of-the-Art AutoML in Imbalanced Binary Classification |
title_full |
Advanced Genetic Programming vs. State-of-the-Art AutoML in Imbalanced Binary Classification |
title_fullStr |
Advanced Genetic Programming vs. State-of-the-Art AutoML in Imbalanced Binary Classification |
title_full_unstemmed |
Advanced Genetic Programming vs. State-of-the-Art AutoML in Imbalanced Binary Classification |
title_sort |
Advanced Genetic Programming vs. State-of-the-Art AutoML in Imbalanced Binary Classification |
author |
Frank, Franz |
author_facet |
Frank, Franz Bacao, Fernando |
author_role |
author |
author2 |
Bacao, Fernando |
author2_role |
author |
dc.contributor.none.fl_str_mv |
NOVA Information Management School (NOVA IMS) Information Management Research Center (MagIC) - NOVA Information Management School RUN |
dc.contributor.author.fl_str_mv |
Frank, Franz Bacao, Fernando |
dc.subject.por.fl_str_mv |
Genetic Programming Automated Machine Learning AutoML Imbalanced Binary Classification General |
topic |
Genetic Programming Automated Machine Learning AutoML Imbalanced Binary Classification General |
description |
Frank, F., & Bacao, F. (2023). Advanced Genetic Programming vs. State-of-the-Art AutoML in Imbalanced Binary Classification. Emerging Science Journal, 7(4), 1349-1363. https://doi.org/10.28991/ESJ-2023-07-04-021--- Data Availability Statement: Publicly available datasets were analyzed in this study. This data can be found here: https://github.com/joaopfonseca/mlresearch. ---This work was supported by a grant of the Portuguese Foundation for Science and Technology (“Fundação para a Ciência e a Tecnologia”), DSAIPA/DS/0116/2019, and project UIDB/04152/2020—Centro de Investigação em Gestão de Informação (MagIC) |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-07-25T22:15:26Z 2023-08-01 2023-08-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/155832 |
url |
http://hdl.handle.net/10362/155832 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2610-9182 PURE: 67340501 https://doi.org/10.28991/ESJ-2023-07-04-021 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
15 application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138148098244608 |