Overcoming over–indebtedness with AI - A case study on the application of AutoML to research
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/115197 |
Resumo: | Dissertation presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics |
id |
RCAP_4735bf31928879bb7d0624ea51292de9 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/115197 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Overcoming over–indebtedness with AI - A case study on the application of AutoML to researchover-indebtednesspoverty riskcredit controlartificial intelligencemachine learningautomated machine learningautomlDissertation presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced AnalyticsThis research examines how artificial intelligence may contribute to better understanding and overcoming over-indebtedness in contexts of high poverty risk. This study uses a field database of 1,654 over-indebted households to identify distinguishable clusters and to predict its risk factors. First, unsupervised machine learning generated three overindebtedness clusters: low-income (31.27%), low credit control (37.40%), and crisis-affected households (31.33%). These served as basis for a better understanding on the complex issue that is over-indebtedness. Second, a predictive model was developed to serve as a tool for policymakers and advisory services by streamlining the classification of overindebtedness profiles. On building such model, an AutoML approach was leveraged achieving performant results (92.1% accuracy score). Furthermore, within the AutoML framework, two techniques were employed, leading to a deeper discussion on the benefits and inner workings of such strategy. Ultimately, this research looks to contribute on three fronts: theoretical, by unfolding previously unexplored characteristics on the concept of over-indebtedness; methodological, by proposing AutoML as a powerful research tool accessible to investigators on many backgrounds; and social, by building real-world applications that aim at mitigating over-indebtedness and, consequently, poverty risk.Castelli, MauroRUNCosta, Victor Cardoso Reis2021-04-08T10:56:13Z2021-03-302021-03-30T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/115197TID:202692469enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T04:57:50Zoai:run.unl.pt:10362/115197Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:42:42.502725Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Overcoming over–indebtedness with AI - A case study on the application of AutoML to research |
title |
Overcoming over–indebtedness with AI - A case study on the application of AutoML to research |
spellingShingle |
Overcoming over–indebtedness with AI - A case study on the application of AutoML to research Costa, Victor Cardoso Reis over-indebtedness poverty risk credit control artificial intelligence machine learning automated machine learning automl |
title_short |
Overcoming over–indebtedness with AI - A case study on the application of AutoML to research |
title_full |
Overcoming over–indebtedness with AI - A case study on the application of AutoML to research |
title_fullStr |
Overcoming over–indebtedness with AI - A case study on the application of AutoML to research |
title_full_unstemmed |
Overcoming over–indebtedness with AI - A case study on the application of AutoML to research |
title_sort |
Overcoming over–indebtedness with AI - A case study on the application of AutoML to research |
author |
Costa, Victor Cardoso Reis |
author_facet |
Costa, Victor Cardoso Reis |
author_role |
author |
dc.contributor.none.fl_str_mv |
Castelli, Mauro RUN |
dc.contributor.author.fl_str_mv |
Costa, Victor Cardoso Reis |
dc.subject.por.fl_str_mv |
over-indebtedness poverty risk credit control artificial intelligence machine learning automated machine learning automl |
topic |
over-indebtedness poverty risk credit control artificial intelligence machine learning automated machine learning automl |
description |
Dissertation presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-04-08T10:56:13Z 2021-03-30 2021-03-30T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/115197 TID:202692469 |
url |
http://hdl.handle.net/10362/115197 |
identifier_str_mv |
TID:202692469 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138038443409408 |