Customer targeting models using data mining techniques

Detalhes bibliográficos
Autor(a) principal: Cernaut, Oana-Maria
Data de Publicação: 2019
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/30010
Resumo: In recent years, the segmentation process has undergone numerous changes, once with the advances in data mining. Knowledge discovery can automatize and provide better insights into customer trends and dynamics. The objective of the paper is to improve the quality of the marketing segmentation for company T. More specifically, the research question it plans to answer is whether data mining techniques deliver a better segmentation model than intuitive approaches. The segmentation steps comprise the identification of the necessary variables, the selection of the relevant ones to conduct the segmentation and the usage of artificial neural networks to predict future outcomes. To this end, the work makes use of web scraping (based on Google searches), K-means clustering and artificial neural networks.
id RCAP_38abda02591634d741aa07cda4487166
oai_identifier_str oai:ria.ua.pt:10773/30010
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Customer targeting models using data mining techniquesB2B segmentationData-driven marketingK-means clusteringArtificial neural networksIn recent years, the segmentation process has undergone numerous changes, once with the advances in data mining. Knowledge discovery can automatize and provide better insights into customer trends and dynamics. The objective of the paper is to improve the quality of the marketing segmentation for company T. More specifically, the research question it plans to answer is whether data mining techniques deliver a better segmentation model than intuitive approaches. The segmentation steps comprise the identification of the necessary variables, the selection of the relevant ones to conduct the segmentation and the usage of artificial neural networks to predict future outcomes. To this end, the work makes use of web scraping (based on Google searches), K-means clustering and artificial neural networks.2020-12-11T17:20:20Z2019-05-23T00:00:00Z2019-05-23info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/30010engCernaut, Oana-Mariainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:58:03Zoai:ria.ua.pt:10773/30010Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:02:14.267568Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Customer targeting models using data mining techniques
title Customer targeting models using data mining techniques
spellingShingle Customer targeting models using data mining techniques
Cernaut, Oana-Maria
B2B segmentation
Data-driven marketing
K-means clustering
Artificial neural networks
title_short Customer targeting models using data mining techniques
title_full Customer targeting models using data mining techniques
title_fullStr Customer targeting models using data mining techniques
title_full_unstemmed Customer targeting models using data mining techniques
title_sort Customer targeting models using data mining techniques
author Cernaut, Oana-Maria
author_facet Cernaut, Oana-Maria
author_role author
dc.contributor.author.fl_str_mv Cernaut, Oana-Maria
dc.subject.por.fl_str_mv B2B segmentation
Data-driven marketing
K-means clustering
Artificial neural networks
topic B2B segmentation
Data-driven marketing
K-means clustering
Artificial neural networks
description In recent years, the segmentation process has undergone numerous changes, once with the advances in data mining. Knowledge discovery can automatize and provide better insights into customer trends and dynamics. The objective of the paper is to improve the quality of the marketing segmentation for company T. More specifically, the research question it plans to answer is whether data mining techniques deliver a better segmentation model than intuitive approaches. The segmentation steps comprise the identification of the necessary variables, the selection of the relevant ones to conduct the segmentation and the usage of artificial neural networks to predict future outcomes. To this end, the work makes use of web scraping (based on Google searches), K-means clustering and artificial neural networks.
publishDate 2019
dc.date.none.fl_str_mv 2019-05-23T00:00:00Z
2019-05-23
2020-12-11T17:20:20Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/30010
url http://hdl.handle.net/10773/30010
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137677782548480