Customer targeting models using data mining techniques
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/30010 |
Resumo: | In recent years, the segmentation process has undergone numerous changes, once with the advances in data mining. Knowledge discovery can automatize and provide better insights into customer trends and dynamics. The objective of the paper is to improve the quality of the marketing segmentation for company T. More specifically, the research question it plans to answer is whether data mining techniques deliver a better segmentation model than intuitive approaches. The segmentation steps comprise the identification of the necessary variables, the selection of the relevant ones to conduct the segmentation and the usage of artificial neural networks to predict future outcomes. To this end, the work makes use of web scraping (based on Google searches), K-means clustering and artificial neural networks. |
id |
RCAP_38abda02591634d741aa07cda4487166 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/30010 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Customer targeting models using data mining techniquesB2B segmentationData-driven marketingK-means clusteringArtificial neural networksIn recent years, the segmentation process has undergone numerous changes, once with the advances in data mining. Knowledge discovery can automatize and provide better insights into customer trends and dynamics. The objective of the paper is to improve the quality of the marketing segmentation for company T. More specifically, the research question it plans to answer is whether data mining techniques deliver a better segmentation model than intuitive approaches. The segmentation steps comprise the identification of the necessary variables, the selection of the relevant ones to conduct the segmentation and the usage of artificial neural networks to predict future outcomes. To this end, the work makes use of web scraping (based on Google searches), K-means clustering and artificial neural networks.2020-12-11T17:20:20Z2019-05-23T00:00:00Z2019-05-23info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/30010engCernaut, Oana-Mariainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:58:03Zoai:ria.ua.pt:10773/30010Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:02:14.267568Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Customer targeting models using data mining techniques |
title |
Customer targeting models using data mining techniques |
spellingShingle |
Customer targeting models using data mining techniques Cernaut, Oana-Maria B2B segmentation Data-driven marketing K-means clustering Artificial neural networks |
title_short |
Customer targeting models using data mining techniques |
title_full |
Customer targeting models using data mining techniques |
title_fullStr |
Customer targeting models using data mining techniques |
title_full_unstemmed |
Customer targeting models using data mining techniques |
title_sort |
Customer targeting models using data mining techniques |
author |
Cernaut, Oana-Maria |
author_facet |
Cernaut, Oana-Maria |
author_role |
author |
dc.contributor.author.fl_str_mv |
Cernaut, Oana-Maria |
dc.subject.por.fl_str_mv |
B2B segmentation Data-driven marketing K-means clustering Artificial neural networks |
topic |
B2B segmentation Data-driven marketing K-means clustering Artificial neural networks |
description |
In recent years, the segmentation process has undergone numerous changes, once with the advances in data mining. Knowledge discovery can automatize and provide better insights into customer trends and dynamics. The objective of the paper is to improve the quality of the marketing segmentation for company T. More specifically, the research question it plans to answer is whether data mining techniques deliver a better segmentation model than intuitive approaches. The segmentation steps comprise the identification of the necessary variables, the selection of the relevant ones to conduct the segmentation and the usage of artificial neural networks to predict future outcomes. To this end, the work makes use of web scraping (based on Google searches), K-means clustering and artificial neural networks. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-05-23T00:00:00Z 2019-05-23 2020-12-11T17:20:20Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/30010 |
url |
http://hdl.handle.net/10773/30010 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137677782548480 |