Learning from multiple annotators: distinguishing good from random labelers

Detalhes bibliográficos
Autor(a) principal: Rodrigues, Filipe
Data de Publicação: 2013
Outros Autores: Pereira, Francisco, Ribeiro, Bernardete
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10316/27407
https://doi.org/10.1016/j.patrec.2013.05.012
Resumo: With the increasing popularity of online crowdsourcing platforms such as Amazon Mechanical Turk (AMT), building supervised learning models for datasets with multiple annotators is receiving an increasing attention from researchers. These platforms provide an inexpensive and accessible resource that can be used to obtain labeled data, and in many situations the quality of the labels competes directly with those of experts. For such reasons, much attention has recently been given to annotator-aware models. In this paper, we propose a new probabilistic model for supervised learning with multiple annotators where the reliability of the different annotators is treated as a latent variable. We empirically show that this model is able to achieve state of the art performance, while reducing the number of model parameters, thus avoiding a potential overfitting. Furthermore, the proposed model is easier to implement and extend to other classes of learning problems such as sequence labeling tasks.
id RCAP_3a9a30386cabdc89299a164113f89048
oai_identifier_str oai:estudogeral.uc.pt:10316/27407
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Learning from multiple annotators: distinguishing good from random labelersMultiple annotatorsCrowdsourcingLatent variable modelsExpectation–MaximizationLogistic RegressionWith the increasing popularity of online crowdsourcing platforms such as Amazon Mechanical Turk (AMT), building supervised learning models for datasets with multiple annotators is receiving an increasing attention from researchers. These platforms provide an inexpensive and accessible resource that can be used to obtain labeled data, and in many situations the quality of the labels competes directly with those of experts. For such reasons, much attention has recently been given to annotator-aware models. In this paper, we propose a new probabilistic model for supervised learning with multiple annotators where the reliability of the different annotators is treated as a latent variable. We empirically show that this model is able to achieve state of the art performance, while reducing the number of model parameters, thus avoiding a potential overfitting. Furthermore, the proposed model is easier to implement and extend to other classes of learning problems such as sequence labeling tasks.Elsevier2013-09-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/27407http://hdl.handle.net/10316/27407https://doi.org/10.1016/j.patrec.2013.05.012engRODRIGUES, Filipe; PEREIRA, Francisco; RIBEIRO, Bernardete - Learning from multiple annotators: distinguishing good from random labelers. "Pattern Recognition Letters". ISSN 0167-8655. Vol. 34 Nº. 12 (2013) p. 1428-14360167-8655http://www.sciencedirect.com/science/article/pii/S016786551300202XRodrigues, FilipePereira, FranciscoRibeiro, Bernardeteinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2020-05-25T12:20:33Zoai:estudogeral.uc.pt:10316/27407Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:58:19.102947Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Learning from multiple annotators: distinguishing good from random labelers
title Learning from multiple annotators: distinguishing good from random labelers
spellingShingle Learning from multiple annotators: distinguishing good from random labelers
Rodrigues, Filipe
Multiple annotators
Crowdsourcing
Latent variable models
Expectation–Maximization
Logistic Regression
title_short Learning from multiple annotators: distinguishing good from random labelers
title_full Learning from multiple annotators: distinguishing good from random labelers
title_fullStr Learning from multiple annotators: distinguishing good from random labelers
title_full_unstemmed Learning from multiple annotators: distinguishing good from random labelers
title_sort Learning from multiple annotators: distinguishing good from random labelers
author Rodrigues, Filipe
author_facet Rodrigues, Filipe
Pereira, Francisco
Ribeiro, Bernardete
author_role author
author2 Pereira, Francisco
Ribeiro, Bernardete
author2_role author
author
dc.contributor.author.fl_str_mv Rodrigues, Filipe
Pereira, Francisco
Ribeiro, Bernardete
dc.subject.por.fl_str_mv Multiple annotators
Crowdsourcing
Latent variable models
Expectation–Maximization
Logistic Regression
topic Multiple annotators
Crowdsourcing
Latent variable models
Expectation–Maximization
Logistic Regression
description With the increasing popularity of online crowdsourcing platforms such as Amazon Mechanical Turk (AMT), building supervised learning models for datasets with multiple annotators is receiving an increasing attention from researchers. These platforms provide an inexpensive and accessible resource that can be used to obtain labeled data, and in many situations the quality of the labels competes directly with those of experts. For such reasons, much attention has recently been given to annotator-aware models. In this paper, we propose a new probabilistic model for supervised learning with multiple annotators where the reliability of the different annotators is treated as a latent variable. We empirically show that this model is able to achieve state of the art performance, while reducing the number of model parameters, thus avoiding a potential overfitting. Furthermore, the proposed model is easier to implement and extend to other classes of learning problems such as sequence labeling tasks.
publishDate 2013
dc.date.none.fl_str_mv 2013-09-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10316/27407
http://hdl.handle.net/10316/27407
https://doi.org/10.1016/j.patrec.2013.05.012
url http://hdl.handle.net/10316/27407
https://doi.org/10.1016/j.patrec.2013.05.012
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv RODRIGUES, Filipe; PEREIRA, Francisco; RIBEIRO, Bernardete - Learning from multiple annotators: distinguishing good from random labelers. "Pattern Recognition Letters". ISSN 0167-8655. Vol. 34 Nº. 12 (2013) p. 1428-1436
0167-8655
http://www.sciencedirect.com/science/article/pii/S016786551300202X
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133873990270976