Mining the sociome for Health Informatics: Analysis of therapeutic lifestyle adherence of diabetic patients in Twitter
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/1822/65086 |
Resumo: | Supplementary material related to this article can be found online at https://doi.org/10.1016/j.future.2020.04.025.Supplementary material 1: this file contains the 23 user communities detected using the GLay algorithm. |
id |
RCAP_3adb9e5ee9950acf4f52bad5c6377ba2 |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/65086 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Mining the sociome for Health Informatics: Analysis of therapeutic lifestyle adherence of diabetic patients in TwitterSociomeCommunity detectionTopic modellingKnowledge graphsDiabetesTwitterScience & TechnologySupplementary material related to this article can be found online at https://doi.org/10.1016/j.future.2020.04.025.Supplementary material 1: this file contains the 23 user communities detected using the GLay algorithm.In recent years, the number of active users in social media has grown exponentially. Despite the thematic diversity of the messages, social media have become an important vehicle to disseminate health information as well as to gather insights about patients experiences and emotional intelligence. Therefore, the present work proposes a new methodology of analysis to identify and interpret the behaviour, perceptions and appreciations of patients and close relatives towards a health condition through their social interactions. At the core of this methodology are techniques of natural language processing and machine learning as well as the reconstruction of knowledge graphs, and further graph mining. The case study is the diabetes community, and more specifically, the patients communicating about type 1 diabetes (T1D) and type 2 diabetes (T2D). The results produced in this study show the effectiveness of the proposed method to discover useful and non-trivial knowledge about patient perceptions of disease. Such knowledge may be used in the context of Health Informatics to promote healthy lifestyles in more efficient ways as well as to improve communication with the patients.This work was partially supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit, COMPETE 2020 (POCI-01-0145-FEDER-006684), the Xunta de Galicia (Centro singular de investigación de Galicia accreditation 2019–2022) and the European Union (European Regional Development Fund - ERDF)- Ref. ED431G2019/06, and Consellería de Educación, Universidades e Formación Profesional (Xunta de Galicia) under the scope of the strategic funding of ED431C2018/55-GRC Competitive Reference Group. The authors also acknowledge the Postdoc contract of Martín Pérez-Pérez, funded by the Xunta de Galicia.info:eu-repo/semantics/publishedVersionElsevierUniversidade do MinhoGael Pérez-RodríguezMartín Pérez-PérezFlorentino Fdez-RiverolaLourenço, Anália2020-092020-09-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/65086engGael Pérez-Rodríguez; Martín Pérez-Pérez; Florentino Fdez-Riverola; Lourenço, Anália, Mining the sociome for Health Informatics: Analysis of therapeutic lifestyle adherence of diabetic patients in Twitter. Future Generation Computer Systems, 110, 214-232, 20200167-739X10.1016/j.future.2020.04.025https://www.journals.elsevier.com/future-generation-computer-systemsinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:01:11Zoai:repositorium.sdum.uminho.pt:1822/65086Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T18:51:06.201499Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Mining the sociome for Health Informatics: Analysis of therapeutic lifestyle adherence of diabetic patients in Twitter |
title |
Mining the sociome for Health Informatics: Analysis of therapeutic lifestyle adherence of diabetic patients in Twitter |
spellingShingle |
Mining the sociome for Health Informatics: Analysis of therapeutic lifestyle adherence of diabetic patients in Twitter Gael Pérez-Rodríguez Sociome Community detection Topic modelling Knowledge graphs Diabetes Science & Technology |
title_short |
Mining the sociome for Health Informatics: Analysis of therapeutic lifestyle adherence of diabetic patients in Twitter |
title_full |
Mining the sociome for Health Informatics: Analysis of therapeutic lifestyle adherence of diabetic patients in Twitter |
title_fullStr |
Mining the sociome for Health Informatics: Analysis of therapeutic lifestyle adherence of diabetic patients in Twitter |
title_full_unstemmed |
Mining the sociome for Health Informatics: Analysis of therapeutic lifestyle adherence of diabetic patients in Twitter |
title_sort |
Mining the sociome for Health Informatics: Analysis of therapeutic lifestyle adherence of diabetic patients in Twitter |
author |
Gael Pérez-Rodríguez |
author_facet |
Gael Pérez-Rodríguez Martín Pérez-Pérez Florentino Fdez-Riverola Lourenço, Anália |
author_role |
author |
author2 |
Martín Pérez-Pérez Florentino Fdez-Riverola Lourenço, Anália |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Gael Pérez-Rodríguez Martín Pérez-Pérez Florentino Fdez-Riverola Lourenço, Anália |
dc.subject.por.fl_str_mv |
Sociome Community detection Topic modelling Knowledge graphs Diabetes Science & Technology |
topic |
Sociome Community detection Topic modelling Knowledge graphs Diabetes Science & Technology |
description |
Supplementary material related to this article can be found online at https://doi.org/10.1016/j.future.2020.04.025.Supplementary material 1: this file contains the 23 user communities detected using the GLay algorithm. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-09 2020-09-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/65086 |
url |
http://hdl.handle.net/1822/65086 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Gael Pérez-Rodríguez; Martín Pérez-Pérez; Florentino Fdez-Riverola; Lourenço, Anália, Mining the sociome for Health Informatics: Analysis of therapeutic lifestyle adherence of diabetic patients in Twitter. Future Generation Computer Systems, 110, 214-232, 2020 0167-739X 10.1016/j.future.2020.04.025 https://www.journals.elsevier.com/future-generation-computer-systems |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799132281419333632 |