Majority rules with random tie-breaking in Boolean gene regulatory networks
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.7/439 |
Resumo: | We consider threshold boolean gene regulatory networks, where the update function of each gene is described as a majority rule evaluated among the regulators of that gene: it is turned ON when the sum of its regulator contributions is positive (activators contribute positively whereas repressors contribute negatively) and turned OFF when this sum is negative. In case of a tie (when contributions cancel each other out), it is often assumed that the gene keeps it current state. This framework has been successfully used to model cell cycle control in yeast. Moreover, several studies consider stochastic extensions to assess the robustness of such a model. Here, we introduce a novel, natural stochastic extension of the majority rule. It consists in randomly choosing the next value of a gene only in case of a tie. Hence, the resulting model includes deterministic and probabilistic updates. We present variants of the majority rule, including alternate treatments of the tie situation. Impact of these variants on the corresponding dynamical behaviours is discussed. After a thorough study of a class of two-node networks, we illustrate the interest of our stochastic extension using a published cell cycle model. In particular, we demonstrate that steady state analysis can be rigorously performed and can lead to effective predictions; these relate for example to the identification of interactions whose addition would ensure that a specific state is absorbing. |
id |
RCAP_3b568a5f49901137f6e81365c851ffcf |
---|---|
oai_identifier_str |
oai:arca.igc.gulbenkian.pt:10400.7/439 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Majority rules with random tie-breaking in Boolean gene regulatory networksGene Regulatory NetworksModels, GeneticCell CycleWe consider threshold boolean gene regulatory networks, where the update function of each gene is described as a majority rule evaluated among the regulators of that gene: it is turned ON when the sum of its regulator contributions is positive (activators contribute positively whereas repressors contribute negatively) and turned OFF when this sum is negative. In case of a tie (when contributions cancel each other out), it is often assumed that the gene keeps it current state. This framework has been successfully used to model cell cycle control in yeast. Moreover, several studies consider stochastic extensions to assess the robustness of such a model. Here, we introduce a novel, natural stochastic extension of the majority rule. It consists in randomly choosing the next value of a gene only in case of a tie. Hence, the resulting model includes deterministic and probabilistic updates. We present variants of the majority rule, including alternate treatments of the tie situation. Impact of these variants on the corresponding dynamical behaviours is discussed. After a thorough study of a class of two-node networks, we illustrate the interest of our stochastic extension using a published cell cycle model. In particular, we demonstrate that steady state analysis can be rigorously performed and can lead to effective predictions; these relate for example to the identification of interactions whose addition would ensure that a specific state is absorbing.PLOSARCAChaouiya, ClaudineOurrad, OuerdiaLima, Ricardo2015-10-26T12:09:16Z2013-07-262013-07-26T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.7/439engChaouiya C, Ourrad O, Lima R (2013) Majority Rules with Random Tie-Breaking in Boolean Gene Regulatory Networks. PLoS ONE 8(7): e69626. doi:10.1371/journal.pone.006962610.1371/journal.pone.0069626info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2022-11-29T14:34:49Zoai:arca.igc.gulbenkian.pt:10400.7/439Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T16:11:43.671745Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Majority rules with random tie-breaking in Boolean gene regulatory networks |
title |
Majority rules with random tie-breaking in Boolean gene regulatory networks |
spellingShingle |
Majority rules with random tie-breaking in Boolean gene regulatory networks Chaouiya, Claudine Gene Regulatory Networks Models, Genetic Cell Cycle |
title_short |
Majority rules with random tie-breaking in Boolean gene regulatory networks |
title_full |
Majority rules with random tie-breaking in Boolean gene regulatory networks |
title_fullStr |
Majority rules with random tie-breaking in Boolean gene regulatory networks |
title_full_unstemmed |
Majority rules with random tie-breaking in Boolean gene regulatory networks |
title_sort |
Majority rules with random tie-breaking in Boolean gene regulatory networks |
author |
Chaouiya, Claudine |
author_facet |
Chaouiya, Claudine Ourrad, Ouerdia Lima, Ricardo |
author_role |
author |
author2 |
Ourrad, Ouerdia Lima, Ricardo |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
ARCA |
dc.contributor.author.fl_str_mv |
Chaouiya, Claudine Ourrad, Ouerdia Lima, Ricardo |
dc.subject.por.fl_str_mv |
Gene Regulatory Networks Models, Genetic Cell Cycle |
topic |
Gene Regulatory Networks Models, Genetic Cell Cycle |
description |
We consider threshold boolean gene regulatory networks, where the update function of each gene is described as a majority rule evaluated among the regulators of that gene: it is turned ON when the sum of its regulator contributions is positive (activators contribute positively whereas repressors contribute negatively) and turned OFF when this sum is negative. In case of a tie (when contributions cancel each other out), it is often assumed that the gene keeps it current state. This framework has been successfully used to model cell cycle control in yeast. Moreover, several studies consider stochastic extensions to assess the robustness of such a model. Here, we introduce a novel, natural stochastic extension of the majority rule. It consists in randomly choosing the next value of a gene only in case of a tie. Hence, the resulting model includes deterministic and probabilistic updates. We present variants of the majority rule, including alternate treatments of the tie situation. Impact of these variants on the corresponding dynamical behaviours is discussed. After a thorough study of a class of two-node networks, we illustrate the interest of our stochastic extension using a published cell cycle model. In particular, we demonstrate that steady state analysis can be rigorously performed and can lead to effective predictions; these relate for example to the identification of interactions whose addition would ensure that a specific state is absorbing. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-07-26 2013-07-26T00:00:00Z 2015-10-26T12:09:16Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.7/439 |
url |
http://hdl.handle.net/10400.7/439 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Chaouiya C, Ourrad O, Lima R (2013) Majority Rules with Random Tie-Breaking in Boolean Gene Regulatory Networks. PLoS ONE 8(7): e69626. doi:10.1371/journal.pone.0069626 10.1371/journal.pone.0069626 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
PLOS |
publisher.none.fl_str_mv |
PLOS |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799130572913639424 |