Machine Learning Applications on Algorithmic Trading in the Foreign Exchange Market
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/125436 |
Resumo: | Nowadays, the largest share of trades done in market exchanges are made by computers. This has been proving to be the main way to invest in the various exchanges. Since the turn of the 20th century, the total volume of trades performed automatically by machines in the United States stock market as gone up from 15% to around 80%. Similarly, in the foreign exchange market, the largest market of the world with over 6 trillion US dollars in daily trade volume during 2019, it is estimated that the large majority of trades are also made by computers. With the possibility of using machines to trade for us, it makes sense to consider a mathematical theory that deals with modeling prices and financial products, and to program a software to take advantage of this information. Since the last century, another type of models have also been developed that have the capability of adapting themselves, or learn, with the information that they are provided. The objective of this thesis is to implement a strategy that benefits from the information generated by a machine learning model. This required an in-depth research on the underlying theory for this type of models, which is carefully defined here. Besides this, we developed a system that trades automatically for us, including a detailed backtesting engine that permitted to test this strategy, among others, in a simulated environment before using it in the market. This automatic trading system was meticulously designed to ensure extensibility and robustness purposing to explore as many strategies and models as needed, including machine learning approaches, based on a large set of user configurations. Subsequently, the foreign exchange market was used to live-run our strategies, which is open 24h a day during weekdays and is highly liquid. As a benchmark, other more common strategies were also tested and the predictive capability of the machine learning model was compared with an established mathematical model, the autoregressive integrated moving average model. |
id |
RCAP_3b61fe1415f672a0c1fd8b142313878b |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/125436 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Machine Learning Applications on Algorithmic Trading in the Foreign Exchange MarketMachine learningNeural NetworksAutomatic trading systemsBacktestingAlgorithmic tradingFinancial modelingDomínio/Área Científica::Ciências Naturais::MatemáticasNowadays, the largest share of trades done in market exchanges are made by computers. This has been proving to be the main way to invest in the various exchanges. Since the turn of the 20th century, the total volume of trades performed automatically by machines in the United States stock market as gone up from 15% to around 80%. Similarly, in the foreign exchange market, the largest market of the world with over 6 trillion US dollars in daily trade volume during 2019, it is estimated that the large majority of trades are also made by computers. With the possibility of using machines to trade for us, it makes sense to consider a mathematical theory that deals with modeling prices and financial products, and to program a software to take advantage of this information. Since the last century, another type of models have also been developed that have the capability of adapting themselves, or learn, with the information that they are provided. The objective of this thesis is to implement a strategy that benefits from the information generated by a machine learning model. This required an in-depth research on the underlying theory for this type of models, which is carefully defined here. Besides this, we developed a system that trades automatically for us, including a detailed backtesting engine that permitted to test this strategy, among others, in a simulated environment before using it in the market. This automatic trading system was meticulously designed to ensure extensibility and robustness purposing to explore as many strategies and models as needed, including machine learning approaches, based on a large set of user configurations. Subsequently, the foreign exchange market was used to live-run our strategies, which is open 24h a day during weekdays and is highly liquid. As a benchmark, other more common strategies were also tested and the predictive capability of the machine learning model was compared with an established mathematical model, the autoregressive integrated moving average model.Hoje em dia, a maior parte dos negócios em bolsa são feitos por computadores. Esta tem vindo a provar-se ser a forma principal de investir nas várias bolsas. Desde o virar do século 20, o volume total de negócios feitos por máquinas no mercado de ações dos Estados Unidos aumentou de 15% para cerca de 80%. Da mesma forma, no mercado de câmbio, o maior mercado do mundo com mais de 6 triliões de dólares americanos em volume de negócios diariamente durante 2019, é estimado que a larga maioria do total de negócios seja também feita por computadores. Com a possibilidade de usar máquinas para fazer negócios por nós, faz sentido considerarmos uma teoria matemática que trate de modelar preços e produtos financeiros, e desenvolver um programa que tome partido desta informação. Desde o século passado, tem-se desenvolvido também outro tipo de modelos que têm a capacidade de se adaptar, ou aprender, com a informação que lhes é passada. O objetivo desta dissertação passa por implementar uma estratégia que tome partido da informação gerada por um modelo de aprendizagem automática. Para tal, realizou-se uma pesquisa aprofundada sobre a teoria subjacente a este tipo de modelos, que definimos cuidadosamente aqui. Para além disto, foi desenvolvido um sistema que faz os negócios automaticamente por nós, incluindo um mecanismo de backtesting que permite testar esta estratégia, entre outras, num ambiente simulado antes de a usar no mercado. Este sistema de negociação automático foi projetado meticulosamente para garantir extensibilidade e robustez com o intuito de explorar tantas estratégias e modelos quanto necessárias, incluindo abordagens de aprendizagem automática, baseado num conjunto de configurações definidas pelo utilizador. Subsequentemente, usámos o mercado de câmbio para correr as nossas estratégias ao vivo, que está aberto 24h por dia durante os dias de semana, e é altamente líquido. Como referência, foram também testadas outras estratégias mais comuns e a capacidade preditiva do modelo de aprendizagem automática foi comparado com um modelo matemático estabelecido, o modelo auto-regressivo integrado de médias móveis.Fonseca, MiguelReal, PedroRUNGouveia, André Nunes Correia2021-10-01T12:46:57Z2021-0120202021-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/125436enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:06:26Zoai:run.unl.pt:10362/125436Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:45:42.915963Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Machine Learning Applications on Algorithmic Trading in the Foreign Exchange Market |
title |
Machine Learning Applications on Algorithmic Trading in the Foreign Exchange Market |
spellingShingle |
Machine Learning Applications on Algorithmic Trading in the Foreign Exchange Market Gouveia, André Nunes Correia Machine learning Neural Networks Automatic trading systems Backtesting Algorithmic trading Financial modeling Domínio/Área Científica::Ciências Naturais::Matemáticas |
title_short |
Machine Learning Applications on Algorithmic Trading in the Foreign Exchange Market |
title_full |
Machine Learning Applications on Algorithmic Trading in the Foreign Exchange Market |
title_fullStr |
Machine Learning Applications on Algorithmic Trading in the Foreign Exchange Market |
title_full_unstemmed |
Machine Learning Applications on Algorithmic Trading in the Foreign Exchange Market |
title_sort |
Machine Learning Applications on Algorithmic Trading in the Foreign Exchange Market |
author |
Gouveia, André Nunes Correia |
author_facet |
Gouveia, André Nunes Correia |
author_role |
author |
dc.contributor.none.fl_str_mv |
Fonseca, Miguel Real, Pedro RUN |
dc.contributor.author.fl_str_mv |
Gouveia, André Nunes Correia |
dc.subject.por.fl_str_mv |
Machine learning Neural Networks Automatic trading systems Backtesting Algorithmic trading Financial modeling Domínio/Área Científica::Ciências Naturais::Matemáticas |
topic |
Machine learning Neural Networks Automatic trading systems Backtesting Algorithmic trading Financial modeling Domínio/Área Científica::Ciências Naturais::Matemáticas |
description |
Nowadays, the largest share of trades done in market exchanges are made by computers. This has been proving to be the main way to invest in the various exchanges. Since the turn of the 20th century, the total volume of trades performed automatically by machines in the United States stock market as gone up from 15% to around 80%. Similarly, in the foreign exchange market, the largest market of the world with over 6 trillion US dollars in daily trade volume during 2019, it is estimated that the large majority of trades are also made by computers. With the possibility of using machines to trade for us, it makes sense to consider a mathematical theory that deals with modeling prices and financial products, and to program a software to take advantage of this information. Since the last century, another type of models have also been developed that have the capability of adapting themselves, or learn, with the information that they are provided. The objective of this thesis is to implement a strategy that benefits from the information generated by a machine learning model. This required an in-depth research on the underlying theory for this type of models, which is carefully defined here. Besides this, we developed a system that trades automatically for us, including a detailed backtesting engine that permitted to test this strategy, among others, in a simulated environment before using it in the market. This automatic trading system was meticulously designed to ensure extensibility and robustness purposing to explore as many strategies and models as needed, including machine learning approaches, based on a large set of user configurations. Subsequently, the foreign exchange market was used to live-run our strategies, which is open 24h a day during weekdays and is highly liquid. As a benchmark, other more common strategies were also tested and the predictive capability of the machine learning model was compared with an established mathematical model, the autoregressive integrated moving average model. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020 2021-10-01T12:46:57Z 2021-01 2021-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/125436 |
url |
http://hdl.handle.net/10362/125436 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138061319143424 |