A Hydrophilic Channel Is Involved in Oxidative Inactivation of a [NiFeSe] Hydrogenase

Detalhes bibliográficos
Autor(a) principal: Zacarias, Sónia
Data de Publicação: 2019
Outros Autores: Temporão, Adriana, Barrio, Melisa Del, Fourmond, Vincent, Léger, Christophe, Matias, Pedro M., Pereira, Inês A.C.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/91637
Resumo: Hydrogenases are metalloenzymes that catalyze the redox conversion between H2 and protons. The so-called [NiFeSe] hydrogenases are highly active for both H2 production and oxidation, but like all hydrogenases, they are inhibited by O2. In the [NiFeSe] enzyme from Desulfovibrio vulgaris Hildenborough this inhibition results from the oxidation of an active site cysteine ligand. We designed mutations that constrict a hydrophilic channel which connects the protein surface to this active site cysteine. Two of the variants show markedly increased tolerance to O2 inactivation, while they retain high catalytic activities in both directions of the reaction, and structural studies confirm that these mutations prevent the oxidation of the cysteine. Our results indicate that the diffusion of O2 or ROS to the active site can occur through a hydrophilic water channel, in contrast to the widely held assumption that only hydrophobic channels are involved in active site inactivation. This provides an original strategy for optimizing the enzyme by protein engineering.
id RCAP_3b78eb46ce56a778af2a2410928da02b
oai_identifier_str oai:run.unl.pt:10362/91637
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling A Hydrophilic Channel Is Involved in Oxidative Inactivation of a [NiFeSe] Hydrogenasehydrogenhydrogenaseshydrophilic channelseleniumsulfenatesulfinateCatalysisChemistry(all)Hydrogenases are metalloenzymes that catalyze the redox conversion between H2 and protons. The so-called [NiFeSe] hydrogenases are highly active for both H2 production and oxidation, but like all hydrogenases, they are inhibited by O2. In the [NiFeSe] enzyme from Desulfovibrio vulgaris Hildenborough this inhibition results from the oxidation of an active site cysteine ligand. We designed mutations that constrict a hydrophilic channel which connects the protein surface to this active site cysteine. Two of the variants show markedly increased tolerance to O2 inactivation, while they retain high catalytic activities in both directions of the reaction, and structural studies confirm that these mutations prevent the oxidation of the cysteine. Our results indicate that the diffusion of O2 or ROS to the active site can occur through a hydrophilic water channel, in contrast to the widely held assumption that only hydrophobic channels are involved in active site inactivation. This provides an original strategy for optimizing the enzyme by protein engineering.Instituto de Tecnologia Química e Biológica António Xavier (ITQB)RUNZacarias, SóniaTemporão, AdrianaBarrio, Melisa DelFourmond, VincentLéger, ChristopheMatias, Pedro M.Pereira, Inês A.C.2023-02-08T01:31:51Z2019-09-062019-09-06T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article11application/pdfhttp://hdl.handle.net/10362/91637eng2155-5435PURE: 16380660https://doi.org/10.1021/acscatal.9b02347info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T04:40:46Zoai:run.unl.pt:10362/91637Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:37:23.424056Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv A Hydrophilic Channel Is Involved in Oxidative Inactivation of a [NiFeSe] Hydrogenase
title A Hydrophilic Channel Is Involved in Oxidative Inactivation of a [NiFeSe] Hydrogenase
spellingShingle A Hydrophilic Channel Is Involved in Oxidative Inactivation of a [NiFeSe] Hydrogenase
Zacarias, Sónia
hydrogen
hydrogenases
hydrophilic channel
selenium
sulfenate
sulfinate
Catalysis
Chemistry(all)
title_short A Hydrophilic Channel Is Involved in Oxidative Inactivation of a [NiFeSe] Hydrogenase
title_full A Hydrophilic Channel Is Involved in Oxidative Inactivation of a [NiFeSe] Hydrogenase
title_fullStr A Hydrophilic Channel Is Involved in Oxidative Inactivation of a [NiFeSe] Hydrogenase
title_full_unstemmed A Hydrophilic Channel Is Involved in Oxidative Inactivation of a [NiFeSe] Hydrogenase
title_sort A Hydrophilic Channel Is Involved in Oxidative Inactivation of a [NiFeSe] Hydrogenase
author Zacarias, Sónia
author_facet Zacarias, Sónia
Temporão, Adriana
Barrio, Melisa Del
Fourmond, Vincent
Léger, Christophe
Matias, Pedro M.
Pereira, Inês A.C.
author_role author
author2 Temporão, Adriana
Barrio, Melisa Del
Fourmond, Vincent
Léger, Christophe
Matias, Pedro M.
Pereira, Inês A.C.
author2_role author
author
author
author
author
author
dc.contributor.none.fl_str_mv Instituto de Tecnologia Química e Biológica António Xavier (ITQB)
RUN
dc.contributor.author.fl_str_mv Zacarias, Sónia
Temporão, Adriana
Barrio, Melisa Del
Fourmond, Vincent
Léger, Christophe
Matias, Pedro M.
Pereira, Inês A.C.
dc.subject.por.fl_str_mv hydrogen
hydrogenases
hydrophilic channel
selenium
sulfenate
sulfinate
Catalysis
Chemistry(all)
topic hydrogen
hydrogenases
hydrophilic channel
selenium
sulfenate
sulfinate
Catalysis
Chemistry(all)
description Hydrogenases are metalloenzymes that catalyze the redox conversion between H2 and protons. The so-called [NiFeSe] hydrogenases are highly active for both H2 production and oxidation, but like all hydrogenases, they are inhibited by O2. In the [NiFeSe] enzyme from Desulfovibrio vulgaris Hildenborough this inhibition results from the oxidation of an active site cysteine ligand. We designed mutations that constrict a hydrophilic channel which connects the protein surface to this active site cysteine. Two of the variants show markedly increased tolerance to O2 inactivation, while they retain high catalytic activities in both directions of the reaction, and structural studies confirm that these mutations prevent the oxidation of the cysteine. Our results indicate that the diffusion of O2 or ROS to the active site can occur through a hydrophilic water channel, in contrast to the widely held assumption that only hydrophobic channels are involved in active site inactivation. This provides an original strategy for optimizing the enzyme by protein engineering.
publishDate 2019
dc.date.none.fl_str_mv 2019-09-06
2019-09-06T00:00:00Z
2023-02-08T01:31:51Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/91637
url http://hdl.handle.net/10362/91637
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2155-5435
PURE: 16380660
https://doi.org/10.1021/acscatal.9b02347
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 11
application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137990397657088