Thermal management in high power devices using diamond

Detalhes bibliográficos
Autor(a) principal: Kyatam, Shusmitha
Data de Publicação: 2023
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/39495
Resumo: The demand for high-performance electronic devices has led to increase in power dissipation as well as heat flux at the device level. Concurrently the requirement to achieve a smaller form-factor and lower device operating temperatures is compounding the thermal challenge. Thermal design for an electronic device can no longer be treated as trivial issue. Power and performance trade-offs and innovative circuit-design techniques are required to reduce power consumption as well as improving the efficiency of the devices. In order to reduce the thermal resistance new materials and process improvements in packaging and heat-sink technology are essential. It is also critical to ensure the cost, viable thermal design and form factor during the design and development phases. At the present moment, the main limitation is no longer the lithography capability to handle smaller and smaller devices, but the problem of thermal management inside chips with billions of devices switching between on and off states. In order to avoid the malfunctions of electronics and to ensure the reliability and efficiency of the electronic systems, substantial research work has been done to explore highly effective cooling techniques to keep up with the development pace of new and larger electronic equipment. The thermal management process involves the technology of generation, control and dissipation of the heat in electronic devices and systems. The major challenges in thermal management can be analyzed by the study of heat dissipation in electronic devices, which vary from 5 W/cm² on a PCB to 2000 W/cm² for a semiconductor laser. The need for novel cooling solutions has become a problem of paramount importance. The effective process of managing heat depends on how well the heat transfer mechanisms are integrated into each level of electronic packaging. This includes the device, board and system levels. While there are many different thermal devices and design strategies that can be used, they generally fall into two categories namely passive or active thermal management. Passive thermal management refers to cooling technologies that rely solely on the thermodynamics of conduction, convection and radiation to complete the heat transfer process. These are the most common cooling methods in use, because they are the least expensive and the easiest to implement. Active thermal management refers to cooling technologies that must introduce energy which is typically an external device to enhance the heat transfer process. Understanding how energy is lost as heat transferred to the environment is also an open issue, given that most of the available circuit theoretic tools are not able to merge circuit analysis and thermodynamics in the same frame.The proposed PhD work, investigates the use of diamond in various electronic cooling techniques both at device and circuit assembly i.e. PCB/Board levels. The research work will concentrate on the effects of temperature and temperature dependent modelling of power electronic devices. It also focuses on design and analysis of High-k diamond layer in fabrication of LEDs and PICs. The theoretical work will be complemented with simulation and experimental work, which includes electronic cooling techniques at different scales. Firstly, at the device level, the feasibility of using a diamond chip carrier is investigated and evaluated its impact on the characteristics of power LEDs. Secondly at the assembly level, analyzed the use of diamond plates as holders for PICs and studied effects such as thermal crosstalk between DFB lasers and other passive cooling techniques. The use of diamond PCBs for 3×3 LED arrays is also proposed and compared with conventional MCPCB. This research pushes the boundary further towards more functionality in a smaller form factor for electronic products.
id RCAP_3c0a39921d4c822fa57e5b3bfedae75c
oai_identifier_str oai:ria.ua.pt:10773/39495
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Thermal management in high power devices using diamondDiamond filmsDevice Thermal ModellingLEDsPower boardsPICsThermal managementThe demand for high-performance electronic devices has led to increase in power dissipation as well as heat flux at the device level. Concurrently the requirement to achieve a smaller form-factor and lower device operating temperatures is compounding the thermal challenge. Thermal design for an electronic device can no longer be treated as trivial issue. Power and performance trade-offs and innovative circuit-design techniques are required to reduce power consumption as well as improving the efficiency of the devices. In order to reduce the thermal resistance new materials and process improvements in packaging and heat-sink technology are essential. It is also critical to ensure the cost, viable thermal design and form factor during the design and development phases. At the present moment, the main limitation is no longer the lithography capability to handle smaller and smaller devices, but the problem of thermal management inside chips with billions of devices switching between on and off states. In order to avoid the malfunctions of electronics and to ensure the reliability and efficiency of the electronic systems, substantial research work has been done to explore highly effective cooling techniques to keep up with the development pace of new and larger electronic equipment. The thermal management process involves the technology of generation, control and dissipation of the heat in electronic devices and systems. The major challenges in thermal management can be analyzed by the study of heat dissipation in electronic devices, which vary from 5 W/cm² on a PCB to 2000 W/cm² for a semiconductor laser. The need for novel cooling solutions has become a problem of paramount importance. The effective process of managing heat depends on how well the heat transfer mechanisms are integrated into each level of electronic packaging. This includes the device, board and system levels. While there are many different thermal devices and design strategies that can be used, they generally fall into two categories namely passive or active thermal management. Passive thermal management refers to cooling technologies that rely solely on the thermodynamics of conduction, convection and radiation to complete the heat transfer process. These are the most common cooling methods in use, because they are the least expensive and the easiest to implement. Active thermal management refers to cooling technologies that must introduce energy which is typically an external device to enhance the heat transfer process. Understanding how energy is lost as heat transferred to the environment is also an open issue, given that most of the available circuit theoretic tools are not able to merge circuit analysis and thermodynamics in the same frame.The proposed PhD work, investigates the use of diamond in various electronic cooling techniques both at device and circuit assembly i.e. PCB/Board levels. The research work will concentrate on the effects of temperature and temperature dependent modelling of power electronic devices. It also focuses on design and analysis of High-k diamond layer in fabrication of LEDs and PICs. The theoretical work will be complemented with simulation and experimental work, which includes electronic cooling techniques at different scales. Firstly, at the device level, the feasibility of using a diamond chip carrier is investigated and evaluated its impact on the characteristics of power LEDs. Secondly at the assembly level, analyzed the use of diamond plates as holders for PICs and studied effects such as thermal crosstalk between DFB lasers and other passive cooling techniques. The use of diamond PCBs for 3×3 LED arrays is also proposed and compared with conventional MCPCB. This research pushes the boundary further towards more functionality in a smaller form factor for electronic products.A necessidade de dispositivos eletrónicos de alto desempenho levou ao aumento da dissipação de energia, bem como do fluxo de calor ao nível do dispositivo. Simultaneamente, os requisitos para dispositivos eletrónicos de elevada potência são cada vez mais elevados, nomeadamente em relação à diminuição do seu tamanho, operando a temperaturas mais baixas, sendo necessário novas técnicas para satisfazer os requisitos. Assim, o projeto térmico de um dispositivo eletrónico deve ser cada vez mais encarado como um desafio importante nos sistemas atuais. Compensações de potência e desempenho, aliadas a técnicas inovadoras de projeto de circuito, são necessárias para reduzir o consumo de energia, bem como melhorar a eficiência dos dispositivos. Para reduzir a resistência térmica são essenciais novos materiais e melhorias de processo na tecnologia de fabricação do encapsulamento e dissipador de calor dos dispositivos. Também é fundamental garantir o custo, o projeto térmico viável e o fator de forma durante as fases de projeto e desenvolvimento. Neste momento, apesar da capacidade de litografia para lidar com dispositivos cada vez menores, a principal limitação está na gestão térmica dentro de chips com milhares de milhões de dispositivos de comutação, que alternam entre os estados ligado e desligado. A fim de evitar o mau funcionamento da eletrónica e garantir a confiabilidade e eficiência dos sistemas eletrónicos, um trabalho de pesquisa substancial foi feito para explorar técnicas de dissipação térmica altamente eficazes para acompanhar o ritmo de desenvolvimento de equipamentos eletrónicos novos e maiores. O processo de gestão térmica envolve a tecnologia de geração, controlo e dissipação do calor em dispositivos e sistemas eletrónicos. Os grandes desafios na gestão térmica podem ser analisados pelo estudo da dissipação de calor em dispositivos eletrónicos, que variam de 5 W/cm², numa placa de circuito impresso, a 2000 W/cm² num laser semicondutor. A necessidade de novas soluções de refrigeração tornou-se um problema de maior importância. O processo eficaz de gestão de calor depende de quão bem os mecanismos de transferência de calor estão integrados em cada nível de encapsulamento do dispositivo eletrónico, tendo em conta os níveis do dispositivo, placa e sistema. Embora existam muitos dispositivos térmicos e diferentes estratégias de projeto que podem ser usados, geralmente enquadram-se em duas categorias: gestão térmica passiva ou ativa. A gestão térmica passiva refere-se a tecnologias de dissipação que dependem exclusivamente da termodinâmica de condução, convecção e radiação para completar o processo de transferência de calor, sendo os métodos de dissipação mais comuns por apresentarem baixo custo e fácil implementação. A gestão térmica ativa refere-se a tecnologias de dissipação de calor com recurso a uma fonte de energia externa, sendo normalmente utilizado um dispositivo externo para auxiliar o processo de transferência de calor. Compreender como a energia é perdida como o calor é transferido para o ambiente é também uma questão em aberto, uma vez que a maioria das ferramentas teóricas de circuitos disponíveis não são capazes de interligar as componentes dos circuitos e termodinâmica. O trabalho de doutoramento proposto investiga o uso de diamante em várias técnicas de dissipação térmica em circuitos eletrónicos, tanto nos dispositivos como na montagem de circuitos, ou seja, aos níveis de PCB/Board. O trabalho de pesquisa incidirá sobre os efeitos da temperatura e os modelos matemáticos da dependência da temperatura de dispositivos eletrónicos de potência. Por outro lado, o trabalho apresentado aborda também o projeto e análise da camada de diamante High-k na fabricação de LEDs e PICs. O trabalho teórico será complementado com simulação e trabalho experimental, que inclui técnicas de dissipação térmica em dispositivos eletrónicos em diferentes escalas. Em primeiro lugar, ao nível do dispositivo, é investigada a viabilidade da utilização de uma base de diamante e avaliado o seu impacto nas características dos LEDs de potência.Em segundo lugar, ao nível da montagem, analisou-se a utilização de placas diamantadas como suportes para PICs e estudou-se efeitos como o crosstalk térmico entre lasers DFB e outras técnicas de arrefecimento passivo. O uso de PCBs de diamante para matrizes de LED 3×3 também é proposto e comparado com o MCPCB convencional. O trabalho teórico é complementado com simulação e trabalho experimental. Este trabalho permite alargar ainda mais os limites das aplicações de eletrónica de potência, proporcionando dispositivos com mais funcionalidades num formato mais reduzido.2028-01-31T00:00:00Z2023-01-27T00:00:00Z2023-01-27doctoral thesisinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10773/39495engKyatam, Shusmithainfo:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-06T04:50:00Zoai:ria.ua.pt:10773/39495Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-06T04:50Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Thermal management in high power devices using diamond
title Thermal management in high power devices using diamond
spellingShingle Thermal management in high power devices using diamond
Kyatam, Shusmitha
Diamond films
Device Thermal Modelling
LEDs
Power boards
PICs
Thermal management
title_short Thermal management in high power devices using diamond
title_full Thermal management in high power devices using diamond
title_fullStr Thermal management in high power devices using diamond
title_full_unstemmed Thermal management in high power devices using diamond
title_sort Thermal management in high power devices using diamond
author Kyatam, Shusmitha
author_facet Kyatam, Shusmitha
author_role author
dc.contributor.author.fl_str_mv Kyatam, Shusmitha
dc.subject.por.fl_str_mv Diamond films
Device Thermal Modelling
LEDs
Power boards
PICs
Thermal management
topic Diamond films
Device Thermal Modelling
LEDs
Power boards
PICs
Thermal management
description The demand for high-performance electronic devices has led to increase in power dissipation as well as heat flux at the device level. Concurrently the requirement to achieve a smaller form-factor and lower device operating temperatures is compounding the thermal challenge. Thermal design for an electronic device can no longer be treated as trivial issue. Power and performance trade-offs and innovative circuit-design techniques are required to reduce power consumption as well as improving the efficiency of the devices. In order to reduce the thermal resistance new materials and process improvements in packaging and heat-sink technology are essential. It is also critical to ensure the cost, viable thermal design and form factor during the design and development phases. At the present moment, the main limitation is no longer the lithography capability to handle smaller and smaller devices, but the problem of thermal management inside chips with billions of devices switching between on and off states. In order to avoid the malfunctions of electronics and to ensure the reliability and efficiency of the electronic systems, substantial research work has been done to explore highly effective cooling techniques to keep up with the development pace of new and larger electronic equipment. The thermal management process involves the technology of generation, control and dissipation of the heat in electronic devices and systems. The major challenges in thermal management can be analyzed by the study of heat dissipation in electronic devices, which vary from 5 W/cm² on a PCB to 2000 W/cm² for a semiconductor laser. The need for novel cooling solutions has become a problem of paramount importance. The effective process of managing heat depends on how well the heat transfer mechanisms are integrated into each level of electronic packaging. This includes the device, board and system levels. While there are many different thermal devices and design strategies that can be used, they generally fall into two categories namely passive or active thermal management. Passive thermal management refers to cooling technologies that rely solely on the thermodynamics of conduction, convection and radiation to complete the heat transfer process. These are the most common cooling methods in use, because they are the least expensive and the easiest to implement. Active thermal management refers to cooling technologies that must introduce energy which is typically an external device to enhance the heat transfer process. Understanding how energy is lost as heat transferred to the environment is also an open issue, given that most of the available circuit theoretic tools are not able to merge circuit analysis and thermodynamics in the same frame.The proposed PhD work, investigates the use of diamond in various electronic cooling techniques both at device and circuit assembly i.e. PCB/Board levels. The research work will concentrate on the effects of temperature and temperature dependent modelling of power electronic devices. It also focuses on design and analysis of High-k diamond layer in fabrication of LEDs and PICs. The theoretical work will be complemented with simulation and experimental work, which includes electronic cooling techniques at different scales. Firstly, at the device level, the feasibility of using a diamond chip carrier is investigated and evaluated its impact on the characteristics of power LEDs. Secondly at the assembly level, analyzed the use of diamond plates as holders for PICs and studied effects such as thermal crosstalk between DFB lasers and other passive cooling techniques. The use of diamond PCBs for 3×3 LED arrays is also proposed and compared with conventional MCPCB. This research pushes the boundary further towards more functionality in a smaller form factor for electronic products.
publishDate 2023
dc.date.none.fl_str_mv 2023-01-27T00:00:00Z
2023-01-27
2028-01-31T00:00:00Z
dc.type.driver.fl_str_mv doctoral thesis
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/39495
url http://hdl.handle.net/10773/39495
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv mluisa.alvim@gmail.com
_version_ 1817543877491425280