Multiobjective characteristic-based framework for very-large multiple sequence alignment
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/151413 |
Resumo: | Rubio-Largo, Á., Vanneschi, L., Castelli, M., & Vega-Rodríguez, M. A. (2018). Multiobjective characteristic-based framework for very-large multiple sequence alignment. Applied Soft Computing Journal, 69, 719-736. [Advanced online publication on 27 June 2017]DOI: 10.1016/j.asoc.2017.06.022 |
id |
RCAP_3cbe41ae2754d854eaa7d8e2c70d3ce6 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/151413 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Multiobjective characteristic-based framework for very-large multiple sequence alignmentCharacteristic-basedEvolutionary algorithmsMultiobjective optimizationMultiple sequence alignmentSoftwareSDG 3 - Good Health and Well-beingRubio-Largo, Á., Vanneschi, L., Castelli, M., & Vega-Rodríguez, M. A. (2018). Multiobjective characteristic-based framework for very-large multiple sequence alignment. Applied Soft Computing Journal, 69, 719-736. [Advanced online publication on 27 June 2017]DOI: 10.1016/j.asoc.2017.06.022In the literature, we can find several heuristics for solving the multiple sequence alignment problem. The vast majority of them makes use of flags in order to modify certain alignment parameters; however, if no flags are used, the aligner will run with the default parameter configuration, which, often, is not the optimal one. In this work, we propose a framework that, depending on the biological characteristics of the input dataset, runs the aligner with the best parameter configuration found for another dataset that has similar biological characteristics, improving the accuracy and conservation of the obtained alignment. To train the framework, we use three well-known multiobjective evolutionary algorithms: NSGA-II, IBEA, and MOEA/D. Then, we perform a comparative study between several aligners proposed in the literature and the characteristic-based version of Kalign, MAFFT, and MUSCLE, when solving widely-used benchmarks (PREFAB v4.0 and SABmark v1.65) and very-large benchmarks with thousands of unaligned sequences (HomFam).NOVA Information Management School (NOVA IMS)Information Management Research Center (MagIC) - NOVA Information Management SchoolRUNRubio-Largo, ÁlvaroVanneschi, LeonardoCastelli, MauroVega-Rodríguez, Miguel A.2024-01-27T01:32:01Z20182018-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10362/151413eng1568-4946PURE: 3236565https://doi.org/10.1016/j.asoc.2017.06.022info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:33:52Zoai:run.unl.pt:10362/151413Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:54:34.909210Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Multiobjective characteristic-based framework for very-large multiple sequence alignment |
title |
Multiobjective characteristic-based framework for very-large multiple sequence alignment |
spellingShingle |
Multiobjective characteristic-based framework for very-large multiple sequence alignment Rubio-Largo, Álvaro Characteristic-based Evolutionary algorithms Multiobjective optimization Multiple sequence alignment Software SDG 3 - Good Health and Well-being |
title_short |
Multiobjective characteristic-based framework for very-large multiple sequence alignment |
title_full |
Multiobjective characteristic-based framework for very-large multiple sequence alignment |
title_fullStr |
Multiobjective characteristic-based framework for very-large multiple sequence alignment |
title_full_unstemmed |
Multiobjective characteristic-based framework for very-large multiple sequence alignment |
title_sort |
Multiobjective characteristic-based framework for very-large multiple sequence alignment |
author |
Rubio-Largo, Álvaro |
author_facet |
Rubio-Largo, Álvaro Vanneschi, Leonardo Castelli, Mauro Vega-Rodríguez, Miguel A. |
author_role |
author |
author2 |
Vanneschi, Leonardo Castelli, Mauro Vega-Rodríguez, Miguel A. |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
NOVA Information Management School (NOVA IMS) Information Management Research Center (MagIC) - NOVA Information Management School RUN |
dc.contributor.author.fl_str_mv |
Rubio-Largo, Álvaro Vanneschi, Leonardo Castelli, Mauro Vega-Rodríguez, Miguel A. |
dc.subject.por.fl_str_mv |
Characteristic-based Evolutionary algorithms Multiobjective optimization Multiple sequence alignment Software SDG 3 - Good Health and Well-being |
topic |
Characteristic-based Evolutionary algorithms Multiobjective optimization Multiple sequence alignment Software SDG 3 - Good Health and Well-being |
description |
Rubio-Largo, Á., Vanneschi, L., Castelli, M., & Vega-Rodríguez, M. A. (2018). Multiobjective characteristic-based framework for very-large multiple sequence alignment. Applied Soft Computing Journal, 69, 719-736. [Advanced online publication on 27 June 2017]DOI: 10.1016/j.asoc.2017.06.022 |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018 2018-01-01T00:00:00Z 2024-01-27T01:32:01Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/151413 |
url |
http://hdl.handle.net/10362/151413 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1568-4946 PURE: 3236565 https://doi.org/10.1016/j.asoc.2017.06.022 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138134580002816 |