Development of a new application of the comet assay to assess levels of O6-methylguanine in genomic DNA (CoMeth)
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/1822/23543 |
Resumo: | O6-methylguanine (O6meG) is one of the most premutagenic, precarcinogenic, and precytotoxic DNA lesions formed by alkylating agents. Repair of this DNA damage is achieved by the protein MGMT, which transfers the alkyl groups from the O6 position of guanine to a cysteine residue in its active center. Because O6meG repair by MGMT is a stoichiometric reaction that irreversibly inactivates MGMT, which is subsequently degraded, the repair capacity of O6meG lesions is dependent on existing active MGMT molecules. In the absence of active MGMT, O6meG is not repaired, and during replication, O6meG:T mispairs are formed. The MMR system recognizes these mispairs and introduces a gap into the strand. If O6meG remains in one of the template strands the futile MMR repair process will be repeated, generating more strand breaks (SBs). The toxicity of O6meG is, therefore, dependent on MMR and DNA SB induction of cell death. MGMT, on the other hand, protects against O6meG toxicity by removing the methyl residue from the guanine. Although removal of O6meG makes MGMT an important anticarcinogenic mechanism of DNA repair, its activity significantly decreases the efficacy of cancer chemotherapeutic drugs that aim at achieving cell death through the action of the MMR system on unrepaired O6meG lesions. Here, we report on a modification of the comet assay (CoMeth) that allows the qualitative assessment of O6meG lesions after their conversion to strand breaks in proliferating MMR-proficient cells after MGMT inhibition. This functional assay allows the testing of compounds with effects on O6meG levels, as well as on MGMT or MMR activity, in a proliferating cell system. The expression of MGMT and MMR genes is often altered by promoter methylation, and new epigenetically active compounds are being designed to increase chemotherapeutic efficacy. The CoMeth assay allows the testing of compounds with effects on O6meG, MGMT, or MMR activity. This proliferating cell system complements other methodologies that look at effects on these parameters individually through analytical chemistry or in vitro assays with recombinant proteins. |
id |
RCAP_3cd51439a02ad680895ca258f930023c |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/23543 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Development of a new application of the comet assay to assess levels of O6-methylguanine in genomic DNA (CoMeth)Comet assayO6meG lesionMGMTMMR systemAlkylating chemotherapyFree radicalsO meG lesion 6Science & TechnologyO6-methylguanine (O6meG) is one of the most premutagenic, precarcinogenic, and precytotoxic DNA lesions formed by alkylating agents. Repair of this DNA damage is achieved by the protein MGMT, which transfers the alkyl groups from the O6 position of guanine to a cysteine residue in its active center. Because O6meG repair by MGMT is a stoichiometric reaction that irreversibly inactivates MGMT, which is subsequently degraded, the repair capacity of O6meG lesions is dependent on existing active MGMT molecules. In the absence of active MGMT, O6meG is not repaired, and during replication, O6meG:T mispairs are formed. The MMR system recognizes these mispairs and introduces a gap into the strand. If O6meG remains in one of the template strands the futile MMR repair process will be repeated, generating more strand breaks (SBs). The toxicity of O6meG is, therefore, dependent on MMR and DNA SB induction of cell death. MGMT, on the other hand, protects against O6meG toxicity by removing the methyl residue from the guanine. Although removal of O6meG makes MGMT an important anticarcinogenic mechanism of DNA repair, its activity significantly decreases the efficacy of cancer chemotherapeutic drugs that aim at achieving cell death through the action of the MMR system on unrepaired O6meG lesions. Here, we report on a modification of the comet assay (CoMeth) that allows the qualitative assessment of O6meG lesions after their conversion to strand breaks in proliferating MMR-proficient cells after MGMT inhibition. This functional assay allows the testing of compounds with effects on O6meG levels, as well as on MGMT or MMR activity, in a proliferating cell system. The expression of MGMT and MMR genes is often altered by promoter methylation, and new epigenetically active compounds are being designed to increase chemotherapeutic efficacy. The CoMeth assay allows the testing of compounds with effects on O6meG, MGMT, or MMR activity. This proliferating cell system complements other methodologies that look at effects on these parameters individually through analytical chemistry or in vitro assays with recombinant proteins.We thank the COST Action TD0905 “Epigenetics: From Bench to Bedside” for financial support. A.A. Ramos and D. Pedro are supported by the Foundation for Science and Technology, Portugal, Grant SFRH/BD/35672/2007 and SFRH/BD/64817/2009, respectively. The work was supported by FCT research grant PEst-C/BIA/UI4050/2011, which is co-funded by the program COMPETE from QREN with co-participation from the European Community fund FEDER.ElsevierUniversidade do MinhoRamos, Alice A.Pedro, Dalila Fernanda NetoLima, Cristóvão F.Collins, Andrew R.Wilson, Cristina Pereira20132013-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/23543eng0891-584910.1016/j.freeradbiomed.2013.01.02823391575http://www.sciencedirect.com/science/article/pii/S0891584913000385info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T11:58:57Zoai:repositorium.sdum.uminho.pt:1822/23543Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T18:48:42.949203Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Development of a new application of the comet assay to assess levels of O6-methylguanine in genomic DNA (CoMeth) |
title |
Development of a new application of the comet assay to assess levels of O6-methylguanine in genomic DNA (CoMeth) |
spellingShingle |
Development of a new application of the comet assay to assess levels of O6-methylguanine in genomic DNA (CoMeth) Ramos, Alice A. Comet assay O6meG lesion MGMT MMR system Alkylating chemotherapy Free radicals O meG lesion 6 Science & Technology |
title_short |
Development of a new application of the comet assay to assess levels of O6-methylguanine in genomic DNA (CoMeth) |
title_full |
Development of a new application of the comet assay to assess levels of O6-methylguanine in genomic DNA (CoMeth) |
title_fullStr |
Development of a new application of the comet assay to assess levels of O6-methylguanine in genomic DNA (CoMeth) |
title_full_unstemmed |
Development of a new application of the comet assay to assess levels of O6-methylguanine in genomic DNA (CoMeth) |
title_sort |
Development of a new application of the comet assay to assess levels of O6-methylguanine in genomic DNA (CoMeth) |
author |
Ramos, Alice A. |
author_facet |
Ramos, Alice A. Pedro, Dalila Fernanda Neto Lima, Cristóvão F. Collins, Andrew R. Wilson, Cristina Pereira |
author_role |
author |
author2 |
Pedro, Dalila Fernanda Neto Lima, Cristóvão F. Collins, Andrew R. Wilson, Cristina Pereira |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Ramos, Alice A. Pedro, Dalila Fernanda Neto Lima, Cristóvão F. Collins, Andrew R. Wilson, Cristina Pereira |
dc.subject.por.fl_str_mv |
Comet assay O6meG lesion MGMT MMR system Alkylating chemotherapy Free radicals O meG lesion 6 Science & Technology |
topic |
Comet assay O6meG lesion MGMT MMR system Alkylating chemotherapy Free radicals O meG lesion 6 Science & Technology |
description |
O6-methylguanine (O6meG) is one of the most premutagenic, precarcinogenic, and precytotoxic DNA lesions formed by alkylating agents. Repair of this DNA damage is achieved by the protein MGMT, which transfers the alkyl groups from the O6 position of guanine to a cysteine residue in its active center. Because O6meG repair by MGMT is a stoichiometric reaction that irreversibly inactivates MGMT, which is subsequently degraded, the repair capacity of O6meG lesions is dependent on existing active MGMT molecules. In the absence of active MGMT, O6meG is not repaired, and during replication, O6meG:T mispairs are formed. The MMR system recognizes these mispairs and introduces a gap into the strand. If O6meG remains in one of the template strands the futile MMR repair process will be repeated, generating more strand breaks (SBs). The toxicity of O6meG is, therefore, dependent on MMR and DNA SB induction of cell death. MGMT, on the other hand, protects against O6meG toxicity by removing the methyl residue from the guanine. Although removal of O6meG makes MGMT an important anticarcinogenic mechanism of DNA repair, its activity significantly decreases the efficacy of cancer chemotherapeutic drugs that aim at achieving cell death through the action of the MMR system on unrepaired O6meG lesions. Here, we report on a modification of the comet assay (CoMeth) that allows the qualitative assessment of O6meG lesions after their conversion to strand breaks in proliferating MMR-proficient cells after MGMT inhibition. This functional assay allows the testing of compounds with effects on O6meG levels, as well as on MGMT or MMR activity, in a proliferating cell system. The expression of MGMT and MMR genes is often altered by promoter methylation, and new epigenetically active compounds are being designed to increase chemotherapeutic efficacy. The CoMeth assay allows the testing of compounds with effects on O6meG, MGMT, or MMR activity. This proliferating cell system complements other methodologies that look at effects on these parameters individually through analytical chemistry or in vitro assays with recombinant proteins. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013 2013-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/23543 |
url |
http://hdl.handle.net/1822/23543 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0891-5849 10.1016/j.freeradbiomed.2013.01.028 23391575 http://www.sciencedirect.com/science/article/pii/S0891584913000385 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799132249817350144 |