Pricing perpetual put options by the Black-Scholes equation with a nonlinear volatility function
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.5/16343 |
Resumo: | We investigate qualitative and quantitative behavior of a solution to the problem of pricing American style of perpetual put options. We assume the option price is a solution to a stationary generalized Black-Scholes equation in which the volatility may depend on the second derivative of the option price itself. We prove existence and uniqueness of a solution to the free boundary problem. We derive a single implicit equation for the free boundary position and the closed form formula for the option price. It is a generalization of the well-known explicit closed form solution derived by Merton for the case of a constant volatility. We also present results of numerical computations of the free boundary position, option price and their dependence on model parameters. |
id |
RCAP_3ce9fb104bea788561fe52dab8a6b370 |
---|---|
oai_identifier_str |
oai:www.repository.utl.pt:10400.5/16343 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Pricing perpetual put options by the Black-Scholes equation with a nonlinear volatility functionOption pricingnonlinear Black-Scholes equationperpetual American put optionearly exercise boundaryWe investigate qualitative and quantitative behavior of a solution to the problem of pricing American style of perpetual put options. We assume the option price is a solution to a stationary generalized Black-Scholes equation in which the volatility may depend on the second derivative of the option price itself. We prove existence and uniqueness of a solution to the free boundary problem. We derive a single implicit equation for the free boundary position and the closed form formula for the option price. It is a generalization of the well-known explicit closed form solution derived by Merton for the case of a constant volatility. We also present results of numerical computations of the free boundary position, option price and their dependence on model parameters.ISEG - REM - Research in Economics and MathematicsRepositório da Universidade de LisboaGrossinho, Maria do RosárioKord, Yaser FaghanŠevčovič, Daniel2018-11-14T14:26:40Z2017-122017-12-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.5/16343engGrossinho, Maria do Rosário, Yaser Faghan Kord e Daniel Ševčovič (2017). "Pricing perpetual put options by the Black-Scholes equation with a nonlinear volatility function". Instituto Superior de Economia e Gestão – REM Working paper nº 019 - 20172184-108Xinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-06T14:46:10Zoai:www.repository.utl.pt:10400.5/16343Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:01:46.410773Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Pricing perpetual put options by the Black-Scholes equation with a nonlinear volatility function |
title |
Pricing perpetual put options by the Black-Scholes equation with a nonlinear volatility function |
spellingShingle |
Pricing perpetual put options by the Black-Scholes equation with a nonlinear volatility function Grossinho, Maria do Rosário Option pricing nonlinear Black-Scholes equation perpetual American put option early exercise boundary |
title_short |
Pricing perpetual put options by the Black-Scholes equation with a nonlinear volatility function |
title_full |
Pricing perpetual put options by the Black-Scholes equation with a nonlinear volatility function |
title_fullStr |
Pricing perpetual put options by the Black-Scholes equation with a nonlinear volatility function |
title_full_unstemmed |
Pricing perpetual put options by the Black-Scholes equation with a nonlinear volatility function |
title_sort |
Pricing perpetual put options by the Black-Scholes equation with a nonlinear volatility function |
author |
Grossinho, Maria do Rosário |
author_facet |
Grossinho, Maria do Rosário Kord, Yaser Faghan Ševčovič, Daniel |
author_role |
author |
author2 |
Kord, Yaser Faghan Ševčovič, Daniel |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Repositório da Universidade de Lisboa |
dc.contributor.author.fl_str_mv |
Grossinho, Maria do Rosário Kord, Yaser Faghan Ševčovič, Daniel |
dc.subject.por.fl_str_mv |
Option pricing nonlinear Black-Scholes equation perpetual American put option early exercise boundary |
topic |
Option pricing nonlinear Black-Scholes equation perpetual American put option early exercise boundary |
description |
We investigate qualitative and quantitative behavior of a solution to the problem of pricing American style of perpetual put options. We assume the option price is a solution to a stationary generalized Black-Scholes equation in which the volatility may depend on the second derivative of the option price itself. We prove existence and uniqueness of a solution to the free boundary problem. We derive a single implicit equation for the free boundary position and the closed form formula for the option price. It is a generalization of the well-known explicit closed form solution derived by Merton for the case of a constant volatility. We also present results of numerical computations of the free boundary position, option price and their dependence on model parameters. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-12 2017-12-01T00:00:00Z 2018-11-14T14:26:40Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.5/16343 |
url |
http://hdl.handle.net/10400.5/16343 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Grossinho, Maria do Rosário, Yaser Faghan Kord e Daniel Ševčovič (2017). "Pricing perpetual put options by the Black-Scholes equation with a nonlinear volatility function". Instituto Superior de Economia e Gestão – REM Working paper nº 019 - 2017 2184-108X |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
ISEG - REM - Research in Economics and Mathematics |
publisher.none.fl_str_mv |
ISEG - REM - Research in Economics and Mathematics |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799131106810789888 |